

Vermont Agency of Transportation

DISCLAIMER

The preparation of this report has been financed in part through grant[s] from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the State Planning and Research Program, Section 505 [or Metropolitan Planning Program, Section 104(f)] of Title 23, U.S. Code. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Tra nsportation.

Prepared by:
Stantec Consulting Services Inc.
55 Green Mounta in Drive
So. Burlington, VT05403
(802) 864-0223

Under the direction of:
Addison County Regional Planning Commission
VT22A Truck Route Study
Table of Contents
1.0 EXECUIIVE SUMMARY 1
1.1 ALTERNATIVES 1
1.2 EXISTING CONDITIONS 4
1.3 PURPOSE AND NEED 5
1.4 EVALUATION 5
1.5 RECOMMENDATIONS 7
2.0 INTRODUCTION 7
3.0 BACKGROUND 9
4.0 EXISTING CONDIIIONS 10
4.1 SUMMARY 11
4.2 ENTIRE STUDY AREA 13
4.2.1 Traffic Volumes 13
4.2.2 Traffic Operations 19
4.2.3 Crash History 23
4.2.4 Transit 26
4.2.5 Natural and Cultural Resources 27
4.3 DOWNTOWN VERGENNES SUBAREA 27
4.3.1 Roadway Conditions 27
4.3.2 Natural and Cultural Resources 36
4.4 VT22A SUBAREA (OUTSIDE DO WNTOWN VERG ENNES) 37
4.4.1 Roadway Conditions 38
4.5 VT17 SUBAREA 42
4.5.1 Roadway Conditions 42
4.5.2 Natural and Cultural Resources 49
4.6 US 7 SUBAREA 51
4.6.1 Roadway Conditions 51
4.7 NEW ALIG NMENTSUBAREA 53
4.7.1 Roadway Conditions 53
4.7.2 Traffic Volumes 53
4.7.3 Zoning/Land Use 53
4.7.4 Natural and Cultural Resources 55
5.0 FUTURE CONDITIONS 57
5.1 NO BUILD CONDITION 58
5.2 ALTERNATIVE A - IN UNE ALTERNATIVE 59
5.3 ALTERNATIVE B - ALTERNATIVE ALIG NMENT. 60
5.4 ALTERNATIVE C - VT17 TRUCK ROUTE 62
5.5 ALTERNATIVE B WITH INDUC ED DEVELOPMENT 63
5.6 FUTURE TRAFFIC OPERATIONS 67
5.6.1 No Build Condition 67
5.6.2 Altemative A 67
5.6.3 Altemative B 67
5.6.4 Altemative C 70
5.6.5 Altemative B with Induced Development 70
5.6.6 Recommendations. 70
6.0 PURPOSE AND NEED 72
7.0 ALTERNATIVES ANALYSS 73
7.1 ALTERNATIVE A - VT22A TRUCK ROUTE (IN-LINE ALTERNATIVE) 76
7.1.1 \quad Ma in Street Improvements. 76
7.1.2 Supporting Strategies 83
7.1.3 Project Costs. 83
7.1.4 ProjectImpacts. 84
7.1.5 Benefit Cost Analysis 87
7.1.6 Project Implementation 88
7.2 ALTERNATIVE B - ALTERNATIVE ALIGNMENT (TRUCK BYPASS) 88
7.2.1 Project Costs 98
7.2.2 Project Impacts. 100
7.2.3 Benefit Cost Analysis 106
7.2.4 Project Implementation 107
7.3 ALTERNATIVE C - VT17 TRUCKROUTE 108
7.3.1 Project Costs. 108
7.3.2 Project Impacts. 112
7.3.3 Benefit C ost Analysis 117
7.3.4 Project Implementation 118
7.4 EVALUATION SUMMARY 119
8.0 RECOMMENDATIONS. 120
9.0 COMMUNITY OUTREACH 121
APPENDIX 1:
USTOF RGURES
Figure 1-1 Representative Treatments for Ma in Street Under Altemative A 2
Figure 1-2 Possible Alignment for the New Truck Route - Altemative B 3
Figure 1-3 Proposed Treatments for VT17 - Altemative C Concept Plan 4
Figure 1-4 Evaluation Summary 6
Figure 4-1 Project Subareas 11
Figure 4-2 Daily Traffic Volumes 14
Figure 4-3 Daily Large Truck (Tractor Trailer) Volumes 15
Figure 4-4 Existing AM Peak Hour Traffic Volumes 16
Figure 4-5 Existing PM Peak Hour Traffic Volumes 17
Figure 4-6 Hourly Truck Volumes on VT22A 18
Figure 4-7 Intersection PM Peak Hour Operating Levels of Service 22
Figure 4-8 All Vehicle Crashes (2013-2017) 24
Figure 4-9 Crashes Involving Trucks (All Types) (2013-2017) 25
Figure 4-10 Roadway Cross Sections 29
Figure 4-11 Ma in Street Grade 30
Figure 4-12 MacDonough Drive/South Water Street/ Ma in Street Intersection 31
Figure 4-13 Maple Street/Ma in Street Intersection 32
Figure 4-14 Green Street/Ma in Street Intersection 33
Figure 4-15 East Street/Ma in Street Intersection 34
Figure 4-16 Monkton Road/Main Street Intersection 35
Figure 4-17 Natural and Cultural Resources - Downtown Vergennes Subarea 36
Figure 4-18 VT22A/US 7 Intersection 39
Figure 4-19 Panton Road/VT22A Intersection 40
Figure 4-20 VT17/VT22A Intersection 41
Figure 4-21a VT17 Design Defic iencies 43
Figure 4-22 VT17/US 7 Intersection 48
Figure 5-1 Figure 2043 No Build PM Peak Hour Traffic Volumes 59
Figure 5-2 2043 Altemative B PM Peak Hour Traffic Volumes 61
Figure 5-3 2043 Altemative C PM Peak Hour Traffic Volumes 63
Figure 5-4 2043 Altemative B with Induced Development PM Peak Hour Traffic Volumes 66
Figure 7-1 Altemative A Plan 77
Figure 7-2a Ma in Street Tra ffic Calming Plan (MacDonough to Maple) 79
Figure 7-3 Altemative B Alignment Plan 90
Figure 7-4a Altemative B Concept Plan - Section a 92
Figure 7-5 Future Land Use Assumptions for Altemative B 98
Figure 7-6 Proposed Treatments for VT17 - Altemative C Concept Plan 110
Figure 7-7 Evaluation Summary 120
List of Tables
Table 4-1 Truck License Plate Matching Survey Results 19
Table 4-2 Intersection Level of Service Criteria 20
Table 4-3 Existing PM Peak Hour Intersection Level of Service 21
Table 4-4 Crashes and Crash Rates by Subarea 26
Table 5-1 Trip Distribution Pattem for Potential New Development Along the New Alignment Roadway 65
Table 5-2 Future PM Peak Hour Intersection Levels of Servic es 68
Table 7-1 Potential Ec onomic Benefits Associated with Altemative A 85
Table 7-2 Existing Cost of Crashes by Roadway Segment 86
Table 7-3 Benefit-Cost Calculation for Altemative A 87
Table 7-4 Implementation Cost Summary for Altemative B 100
Table 7-5 Potential Ec onomic Benefits Assoc iated with Altemative B Downtown Vergennes 101
Table 7-6 Potential Tax ConsequencesAssociated with New Development Along the Bypass Roadway 103
Table 7-7 Annual C ost of Crashes with Altemative B 104
Table 7-8 Annual Truck Operating Cost Comparison for Altemative B 106
Table 7-9 Benefit-Cost Calculation for Altemative B 106
Table 7-10 Construction C ost Estimate for VT17 Improvements - Altema tive C 111
Table 7-11 Potential Economic Benefits Associated with Altemative C 114
Table 7-12 Annual Cost of Crashes with Altemative C 116
Table 7-13 Annual Truck Operating Cost Comparison - Altemative C 117
Ta ble 7-14 Benefit-Cost Calculation for Altemative C 118

1.0 EXECUIIVE SUMMARY

The Addison County Regional Planning Commission (ACRPC) in partnership with the Vermont Agency of Transportation (VTrans) retained Stantec Consulting Services, Inc. and Adamant Accord to evaluate the feasibility and preference for altemative truck routes to VTRoute 22A through the City of Vergennes, Vermont. Strategies were explored to mitigate the safety, traffic operations, noise, dust and vibration impacts of the up to 800 trucks perday, mostly tractor trailers, passing through the historic city center. A portion of the trip through the city center is made on an 11 percent grade. The three principal altematives considered are as follows:

- VT22A Truck Route. VT22A would continue to serve as the prima ry truck route. Modifications would be made along the existing VT22A a lignment within Vergennes to better manage traffic flows for all travel modes.
- New Alignment Truck Route. A road would be constructed on a new a lignment within the City of Vergennes north and west of downtown. The new roadway would be open to all traffic and through trucks would be restricted from passing through downtown Vergennes.
- VT17 Truck Route. Through truc ks travelling on VT 22A would be diverted to VT17 between VT22A and US 7. VT17, including major intersections, would be reconstructed as necessary to safely accommodate increased truck traffic.

The altematives were evaluated with respect to a wide range of factors including project cost, quality of life impacts, ec onomic impacts and feasibility.

At the conclusion of an extensive outreach process managed by the ACRPC that engaged stakeholders from Vergennes and neighboring communities, further consideration of the VT 17 Truck Route altemative was rejected. A decision was made to implement much of the recommendations within the VT22A Truck Route altemative as part of a pending VTrans roadway resurfacing project. Additionally, stakeholders at the final public hearing for the project overwhelmingly agreed to pursue development and implementation of the New Alignment Truck Route altemative.

1.1 ALTERNATIVES

The three altematives evaluated were broadly defined by the ACRPC at the beginning of the study. The consultant team developed the altemative plans in greater detail to allow for a thorough and meaningful evaluation of each. The VT22A Truck Route altemative, identified as Altemative A in the study, included traffic control improvements, traffic calming measures and enhanced pedestrian and bicycle accommodations along VT22A in Vergennes. A plan sheet illustrating typical improvements proposed for a downtown roadway segment is shown in Figure 1-1. A proposed alignment for the New Alignment Truck Route altemative, Altemative B, is shown
in Figure 1-2. The new roadway would be approximately two miles long, a minimum of 32 feet wide, have a 45 -miles per hour design speed, and span the Otter Creek on a 900 - feet long bridge. Altemative C, the VT17 Truck Route, would involve widening, reconstruction and/or rea lignment of 7.5 -miles of VT17 between VT22A and US 7. Assumed upgrades along VT17 are noted in Figure 1-3.

Figure 1-1 Representative Treatments for Main Street Under Altemative A

Figure 1-2 Possible Alignment for the New Truck Route - Altemative B

Figure 1-3 Proposed Treatments forVT17-Altemative C Concept Plan

1.2 EXISIING CONDIIONS

An existing conditions database wascompiled to aid in developing each altemative and assessing their feasibility. Collected data included: roadway geometry and traffic controls; vehic ular traffic volumes; roadway intersection operations; vehic ular crash history; land use conditions; economic factors (land values, associated property taxes and retail/resta urant sales); and, environmental/historic resources. These investigationsconfirmed the magnitude of the truck issue in downtown Vergennes and helped define the opportunities and constraints associated with the altematives considered. Overall, it was found that there were signific ant opportunities to enhance pedestrian and bicycle accommodations in the downtown area ranging from the addition of pedestrian controls and pedestrian signal phases at the existing signalized intersections to the provision to on-street bike lanes. Environmental a nd historic resourcesidentified along the New Alignment Truck Route and along VT17 helped define project permitting and mitigation requirements. VT22A in downtown Vergenneswasidentified as a High Crash Location such that proposalsto reconstruct the roadway and improve safety or to divert traffic to altemative routes would ha ve positive safety impacts.

VT22A TRUCK ROUIE STUDY

1.3 PURPOSE AND NEED

A Purpose and Need Statement wasdeveloped and used to measure the performance of each altemative. The project purpose was defined as:
"Enhance the economic vitality and quality of life in downtown Vergennes by reducing the noise, vibration, fume and dust impacts of truck traffic while:

- Mainta ining a high level of service for the movement of freight in the region;
- Minimizing and/or mitigating traffic impacts to othertransportation comidors;
- Minimizing property and environmental resource impacts in neighboring communities;
- Supporting the continued movement of non-truck traffic through downtown Vergennes; and
- Providing a cost-effective use of resources."

The Purpose and Need Statement was first drafted by the project management team which includes the consultants, VTrans and ACRPC staff. It waslater presented to and endorsed by the ACRPC Transportation Advisory Committee.

1.4 EVALUATION

The detailed evaluation of each altemative included an assessment of project costs and impacts. The most signific ant find ings were as follows.

- Project implementation costs for Altematives B a nd C are an order of magnitude higher than those for Altemative A. The estimates for Altematives B and C are $\$ 39$ million and $\$ 23$ million, respectively. The total cost of improvements along VT22A under Altemative A is $\$ 1.9$ million and a portion of these costs may be covered by the pending paving project.
- Protection of environmental and historic al resources and the mitigation of una voidable impacts to these resources represents a p proximately $\$ 600,000$ of the implementation cost of Altemative B and $\$ 100,000$ of the implementation cost of Altemative C. The limited scope of work associated with Altemative A has only nominal mitigation costs.
- All three altematives will have positive impacts on traffic safety. The Altemative A improvements will have a positive impact by lowering the crash rate on VT22A in downtown Vergennes. Altematives B and C will enhance safety by removing traffic from downtown Vergennes and by providing safer altemative routes.
- Altemative A will ha ve relatively minor but positive quality of life and economic impacts on downtown Vergennes. By more safely accommodating pedestrian and bicycle traffic in the presence of the existing truck traffic it is assumed that downtown businesses will experience a slight increase in sales and property values.
- Altematives B and C will have very positive quality of life and economic impacts on downtown Vergennes boosting retail sales, restaurant sales and property values by diverting 90 to 95 percent of the truck traffic that presently passesthrough the downtown. These impacts would be offset in part under Altemative C by inc reasing truck volumes past homes on VT17 and lowering property values in this comidor.
- A significant negative consequence of Altemative C is the impact it would have on truck operations. The truck diversions proposed under this plan would add more than $\$ 2$ million per year in travel costs for truckers. Altematives A and B would have no signific ant impact on truck operating costs.

A summary of the Altematives analysis is provided in Figure 1-4.
Figure 1-4 Evaluation Summary

Catergory	Alt. A - VT 22A Alternative	Alt. B - New Alignment Alternative	Alt. C - VT 17 Alternative
Project Implementation Costs			
Construction	\$ 1,900,000	\$ 27,500,000	\$ 17,500,000
Design \& Permitting	included in construction	\$ 8,500,000	\$ 5,390,000
Land Acquistion	nominal	\$ 2,150,000	\$ 10,000
Environmental Mitigation	\$	\$ 600,000	\$ 100,000
TOTAL (Lump Sum)	\$ 1,900,000	\$ 38,750,000	\$ 23,000,000
TOTAL (Annualized)*	\$ 110,000	\$ 2,700,000	\$ 1,285,000
Project Impacts (Annualized)			
Economic-Downtown**	\$ 66,500	\$ 237,500	\$ 237,500
Economic-Outside of Downtown***	\$	\$ 2,600,000	\$ 8,500
Safety (Crashes)	\$ 52,000	\$ 12,000	\$ 37,000
Truck Operations	\$	\$ (60,000)	\$ (2,250,000)
TOTAL	\$ 118,500	\$ 2,789,500	\$ (1,967,000)
Feasibility			
Probability of success	Very High	High	High
Timing	2 to 5 years	10 to 15 years	8 to 12 years

* Lump Sum costs financed over 30 years at 2.75% interest.
** Net property tax, sales tax and meals tax revenues associated with increased downtown vitality.
*** Net property tax revenues associated with: 1) Changed property values along the New Alignment corridor associated with potential new development at full build out under Alternative B; and, 2) Changed property values along VT 22A and VT 17 due to truck traffic shifts associated with Alternative C.

VT22A TRUCK ROUTE STUDY

The a nalysis of Altemative B was expanded to consider other potential economic impacts. The New Alignment Truck Route would pass through land that is presently undeveloped or in agric ultural use. The new roadway in conjunction with possible zoning changes could stimulate new development along the roadway signific antly inc reasing property values and associated property taxes. A "build out" scenario developed in conjunction with City leaders and the Vergennes Planning Commission indicates that at full build out, annual new property tax revenues of $\$ 2.6$ million could be generated. This figure nearly matc hes the estimated annual cost to finance the $\$ 39$-million roadway project.

1.5 RECOMMENDATIONS

In light of the above findings, the consultant team recommended implementation of improvements included under Altemative A as a short-tem strategy to at least partially mitigate the ongoing impacts of truck traffic in Vergennes. These mea sures however, do not fully address the issue. Consequently, it was also recommended that Altemative B be pursued as the preferred long-tem strategy to achieve the quality of life benefits expressed in the Purpose and Need Statement. Continued coordination with VTrans regarding the pending paving project is recommended to implement the short-tem strategy. Seeking countywide endorsement of the long-tem plan is recommended as a next step towards securing VTrans funding for project development and implementation.

2.0 INTRODUCTION

The Addison County Regional Planning Commission (ACRPC) in partnership with the Vermont Agency of Transportation (VTrans) retained Stantec Consulting Services, Inc. to evaluate the feasibility and preference for altemative truck routes to VTRoute 22A through the City of Vergennes, Vermont. The project wasmanaged by the ACRPC. A small working group of ACRPC and VTrans staff provided general direction and technical guidance. The ACRPC Transportation Advisory Committee (TAC), which has representatives from all towns in Addison County, provided feedback and direction to the consultant at major milestones. The study findings and recommendations were presented to all stakeholders at a public meeting and open house.

Three altematives were identified for consideration in the study as follows.
VT22A Truck Route. VT22A would continue to serve as the prima ry truck route. Modific ations would be made to VT22A nearand within Vergennes to mitigate the safety, traffic operations, noise and vibration impacts of large trucks.

New Alignment Truck Route. A road would be constructed on a new alignment that diverts through trucks from Vergennes (trucks without an origin or destination in Vergennes).

VT22A TRUCK ROUIE STUDY

VT17 Truck Route. Through trucks tra velling on VT22A would be diverted to VT17 between VT 22A and US 7. VT17, including major intersections, would be reconstructed as necessary to safely accommodate increased truck traffic.

The first phase of the study included three components. First, existing conditions data were collected to establish roadway, traffic, land use, environmental and economic conditions in the project study area. Second, the three altematives were defined in suffic ient detail to allow for a thorough and meaningful evaluation of each altemative. Third, a Purpose and Need Statement wasdeveloped that was used to measure the performance of each altemative. The existing conditionsdata, three altematives and Pupose and Need Statement were first presented to the ACRPC TAC and then to all project stakeholders at a public meeting.

The next phase of the study included a detailed evaluation of each altemative. The proposed plans were reviewed to estimate project implementation costs. Environmental factors were considered to understand project feasibility and permitting issues. Upon concluding that all three altematives were feasible, a nalyseswere then conducted to understand project impacts and benefits related to the Purpose and Need Statement. Specifically, a nalyses were conducted to determine:

- Future traffic volumes for all vehicles and trucks on study a rea roadway segments;
- Impactson roadway traffic operations;
- Impact of proposed changes in traffic volumes and proposed roadway improvements on vehic ularcrash experience and crash costs;
- Impact of truck route diversions on truck operating costs;
- Impact of truck traffic on land values for properties abutting impacted roadways;
- Impact on property tax revenues associated with anticipated changes in property values;
- Impact of truck traffic on retail and resta urant revenues in downtown Vergennes;
- Changes in tax revenues associated with changesin economic activity in downtown Vergennes;
- Potential new land development associated with the New Alignment Altemative; and
- Potential new tax revenues associated with new land development.

The findings from these investigations were documented in a draft report and shared first with the ACRPC TAC and then with all project stakeholders at a public meeting. This final report was then issued incomorating comments received on the draft report.

3.0 BACKGROUND

(This report section was drafted by the ACRPC and included in the Request For Proposals for this study.)

VTRoute 22A is a minor a renial that serves as a major truck route from New York State to northem Vermont. Based on the most recent counts, there are up to 800 trucks per day on VT 22A asit passes through Main Street in the center of downtown Vergennes. Almost 60 percent of these trucks, 430 perday, are large tractor trailers that c reate signific ant noise, vibration, safety and traffic operational issues affecting the quality of life for Ma in Street businesses a nd homes and to the general travelling public. There have been two signific ant planning efforts over the last twenty years, summarized below, that evaluated altemate routes and other short-term options to mitigate the negative impacts of truck traffic. While some changes have been made to help calm traffic and improve the pedestrian environment, the volume of trucks passing through Vergennes has not abated and the negative impacts persist. A recent proposal by a former Vergennes mayor to divert northbound trucks to VT17 was not well received by adjoining townsand the TAC but hasserved as motivation to reconsider all options.

The Vergennes Route 22A Bypass Preliminary Design Report¹ ${ }^{\text {w }}$ as completed by a consultant team in 1995 for the ACRPC. The study evaluated the feasibility of constructing an altemate truck route on a new roadway alignment in three general comidors including a far west option, near west option and an eastem option. The near west option was selected as the preferred comidor based on a qualitative assessment of traffic demand impacts, la nd use plans, natural features, infra structure needs, and impacts to community character and scenic quality. A more detailed conceptual alignment was developed within the preferred "near west" comidor. The near west comidor evaluated in the Preliminary Design Report has one a lignment from its northem intersection with VT22A to Mac Donough Drive. There were three alignment options considered from MacDonough Drive, across the OtterCreek and Panton Road to the southem intersection with VT22A in Panton. Both the southem and northem intersections with VT22A were assumed to be roundabouts. The Preliminary Design Report also presents different roadway design altematives including a typical two-lane rural highway designed for 55 mph with wide travel lanes and shoulders and a 100-foot wide ROW; a modified roadway standard with shoulders for on-road biking and vegetation closerto the roadway; and a city parkway concept. The Preliminary Design Report also presented several scenariosdemonstrating how these design options would support different land use development pattems. The Preliminary Design Report compared the pros and cons of the different alignment, roadway design and land use pattem optionsbut did not recommend a specific alignment or design.

The bypass concept was supported by the City of Vergennes, but the surrounding towns had concems. The 2002 Greater Vergennes Traffic Impact Feasibility Study² was undertaken by the

[^0]ACRPC with consultant assistance to build consensus on the issuescreating the need foran altemate truck route and to identify feasible short and longer-term solutions. The Study's recommendations were based on a series of workshops in Vergennes, Pa nton and Ferisburgh with the public and others with expertise and knowledge of the issues. Based on the workshops, the Study presents a Purpose and Need statement that clearly artic ulates a desire to "...address and mitigate the negative impacts, existing and anticipated, relating to the heavy truck traffic travelling through the City of Vergennes and to facilitate freight travel along the Route 22A comid or with a minimum of restrictions and hindrances." It documents a variety of concems and provides comments on the following solution areas: Bypass around Vergennes, Altemative Routes, Altemative Transportation Systems a nd Downtown Improvements. The Study recommends some short-term actions and concludes that the long-term approach should be to find an altemative route to VT22A through Vergennesfor trucks and recommends further consideration of the bypass. The Study also recommends that VT17, which connects VT22A to US 7 south of Vergennes, should also be evaluated as an altemate route since costs are comparable to the bypass but no new roadway alignment would be required.

It has been more than twenty years since the 1995 Preliminary Design Report was completed and more than 15 years since the 2002 Greater Vergennes Traffic Impact Feasibility Study was completed. While the City of Vergennes has made progress imp roving the streetsc ape and pedestrian environment along VT22A in its downtown, the volume of large trucks and associated impacts persist.

4.0 EXISTING CONDIIONS

Exiting conditionsfor the study a rea were established creating a baseline for the evaluation of altemative actions. The study a rea includes portions of VT22A, VT17 and US 7 connecting Addison, Ferisburgh and New Haven. Also included is the new alignment comidor passing to the west and north of downtown Vergennes. Traffic volume, traffic operations, vehicle crash, and transit system data for the entire study area are first presented. Roadway conditions, la nd use data, environmental and cultural resource data are then presented for five separate subareas. The five subareas are identified in Figure 4-1. The three primary subareas include downtown Vergennes, the new alignment comidor, and the VT17 comidor as these will be directly and signific antly impacted by at least one of the three actions under consideration. Two other subareas are documented including VT22A outside of the downtown area and a section of the US 7 comidor. These secondary subareas are relevant in terms of understanding the regional impacts of the altematives under consideration. The VT22A subarea data is also needed to develop conceptual plansfor connectionsto VT22A for the new alignment altemative.

Figure 4-1 Project Subareas

4.1 SUMMARY

The a nalysis of existing conditions was conducted prima rily to establish baseline conditions for the evaluation of altematives. The deta ils of the existing conditions a nalysis are desc ribed below. Key findings from this a na lysis are listed here.

- Traffic Volumes:

o VT22A is one of the heaviest traveled roadways in the study area carying up to 9800 vehicles per day in downtown Vergennes compared to only 7400 vehic les perday on US 7 in New Haven.
o Commuter peak period traffic counts indic ate that traffic volume levels are considerably higher during the PM peak hour compared to the AM peak hour.
o Peak hour volumes on Main Street in downtown Vergennesare nearly balanced by direction. Northbound and southbound volumes are nearly equal during the PM peak hour.

VT22A TRUCK ROUIE STUDY

- Trucks:

o VT22A caries an unusually high volume of trucks. Up to 800 trucks perday, including more than 500 tractor tra iler units, pass through downtown Vergennes. In comparison, US 7 in Brandon camies only 190 large trucksperday, US 4 in Woodstock camies 140 la rge trucks perday and VT116 in Bristol caries 50 large trucks per day.
o The truck volume is high compared to other roadways in the study a rea with only 268 large trucks perday on US 7 in New Haven and 71 large trucks perday on VT17 in Waltham.
o Volumes for large trucks (tractortrailer units) peak during the moming hours yet during the lunch hour one tractor trailer unit passes through the downtown every four minutes on average. One large truck passes through the downtown every three minutes on a verage during the dinner hour.
o A vehicle tracking survey indicates that 90 percent of smaller trucks a nd 98 percent of tractor trailer trucks on VT22A a re through trucks not stopping in Vergennes.

- Traffic Operations:
o Intersections in the study a rea generally operate free of congestion even during commuter peak hours. The one exception identified relates to traffic entering VT22A from Panton Road during the PM peak hour when employees are exiting the Collins Aerospace facility.

- Traffic Safety:

o Crash rates on study a rea roadways are generally within nomal ranges with one exception. Main Street in downtown Vergennes is classified by VTrans as a High Crash Location. This may be attributable to the high number of closely spaced intersections in the downtown area.
o Comparing roadway segments outside of downtown Vergennes, VT17 has the highest crash rate at 1.27 c rashes per million vehic le miles of tra vel.
o Overa five-year span studied, no crashes involving pedestria ns or bic yc lists were reported in the study area in the VTrans database.

- Roadway Conditions:

o Roadway c ross sections (the combined width of travel lanes a nd shoulders) a long two roadway segments in the study area do not comply with VTrans sta nda rds for roadways camying heavy truck traffic volumes. These segments include all of VT17 between VT22A and US 7 and VT22A through Vergennes.

VT22A TRUCK ROUTE STUDY

o Roadway grades greatly exceed VTransstandards (actual 11\%, recommended maximum six percent) on Ma in Street in downtown Vergennes just north of Otter Creek.
o Accommodations for pedestrians (sidewalks) a nd bic yc lists (bike la nes) a re not provided outside of Vergennes.

- Transit
o Downtown Vergennes is accessible via public transportation with bus service to Middlebury and Burlington.
- Natural and Cultural Resources:-
o Natural and cultural resources found in the study a rea a re typical for Vemont. The most signific a nt natural resourc es relate to the Otter Creek and its associa ted wetlands a nd floodplain.

4.2 ENTIRE STUDY AREA

Certain existing conditions data were collected and examined over the entire project study area. The data relate principally to vehic ulartraffic volumes, vehicle crashes, traffic operations, and transit services.

4.2.1 Traffic Volumes

Traffic volume data collected for the study area includes da ily traffic volumes on roadway links and peak hour volumes for intersections. Generally, vehicle classific ation counts were exa mined such that truck volumes could be evaluated separate from other traffic. Also, field surveys were conducted to estimate the volume on through trucks passing through downtown Vergennes.

4.2.1.1 Daily Traffic Volumes

Vehiculartraffic volumes for the study area roadways were collected from the VTranstraffic volume database and other recent studies. The source data includes a utomatic traffic recorder counts and vehicle classific ation counts on roadway segments a nd vehicle tuming movement counts at intersections. The source data are provided in the report appendix. Figure 4-2 shows the existing daily traffic volumes on the study area roadways. (The daily volumes a re based on 2017 traffic counts at most locations.) As shown, the highest volume roadway segment in the study area is US 7 north of VT22A which camies 12,900 vehic les per day. South of the VT22A/US 7 intersection this volume splits with approximately 7200 vehic les per day using VT22A a nd 7400 vehic lesper day on US 7. VT17 camies a relatively modest volume of only 1800 vehic les per day east of VT22A. West of VT22A it c arries 3100 vehic les per day. 2017 da ily volumes for la rge (tractor tra iler) trucks, a re provided in Figure 4-3. Truck traffic volumes are also hea viest on US 7 north of Vergennes. There are a pproximately 725 la rge truc ks per day on US 7 north of VT22A.

South of the VT22A/US 7 intersection VT22A camies 510 large trucks per day and US 7 camies approximately 270 large trucks per day. VT17 east of VT22A ca mies only 71 large trucks per day.

Figure 4-2 Daily Traffic Volumes

Figure 4-3 Daily Large Truck (TractorTrailer) Volumes

4.2.1.2 Vehicle Tuming Movement Counts

Vehicle tuming movement counts were also compiled for commuter peak hour conditions for each of the major intersections in the traffic study area. These volumes are reported in Figures 44 and $4-5$ for the AM and PM peak commuter hours, respectively. The counts were generally collected within the last five years. The data indicate 565 vehicles on Ma in Street just north of Green Street during the AM peak hour and 905 vehicles at this location during the PM peak hour. Further south on VT22A just north of VT17, VT22A cames 355 AM peak hour vehic les and 465 PM peak hour vehicles. The higher volumes reported in PM peak hour indicate that the PM

VT22A TRUCK ROUIE STUDY

peak hour is more critic al from a traffic operations perspective. Consequently, operations a nalyses in this study address the PM peak hour condition.

Figure 4-4 Existing AM Peak Hour Traffic Volumes

Note: Peak hours vary by location. Peak hours reported for the 7 AM to 9 AM time period.

Figure 4-5 Existing PM Peak Hour Traffic Volumes

Note: Peak hours vary by location. Peak hours reported for the 4 PM to 6 PM time period.
The most recent volumes reported for VT22A are provided in a vehicle classific ation count conduc ted in August 2018 by VTrans 1.2 miles north of VT17. This count, summa nized in Figure 4-6, shows the hourly variation in volumes for heavy trucks and medium trucks. (The terms "heavy" and "large" trucks are used interchangeably throughout this study to reference 18-wheel, tractor trailer units. Smaller trucks, other than pick-up trucks, are referenced as either "small" or "medium" trucks.) As shown, the busiest hours for heavy truck traffic along VT22A occur from 6
to 8 AM. During this period more than 30 large trucks per hour pass through Vergennes or approximately one truck every two minutes. However, large truck traffic persists through all hours of the day with only one hour experiencing fewerthan ten trucks per hour. During lunchtime when diners may be patronizing sidewalk cafes, one larger truck passes every four minutes. During the dinner hours one large truck passes every three minutes. Activity for sma ller trucks peaks during the aftemoon with over 40 sma ller trucks recorded in the 2 to 3 PM hour.

Figure 4-6 Hourly Truck Volumes on VT22A

Note: Data collected by VTransAugust 31, 2018 at Location ID A111 on VT22A in Addison 1.2 miles north of VT17.

4.2.1.3 Through Truck Traffic

A lic ense plate matching survey was conducted by VTrans staff in July 2018 to determine the volume of trucks on VT22A that are through trucks passing through Vergennes without stopping. The surveys were conducted from 12 PM to 6 PM on separate dates foreach direction of travel. On Thursday, July 19, 2018 northbound trucks were recorded at three locations: on VT22A just north of VT17 (approaching Vergennes); on VT22A at US 7 (leaving Vergennes); and, on Monkton Road at US 7 (lea ving Vergennes). Southbound truck movements were recorded on Tuesday, July 31, 2018 at the same locations. The collected vehicle identification data were
sorted and compared to look for matc hes between trucks entering Vergennes and trucks exiting Vergennes. Any truck reported leaving the survey a rea within 20 minutes of entering the survey area was identified as a through truck that presumably passed through Downtown Vergennes without stopping. As shown in Table 4-1, 131 northbound truck movements were recorded and 90 percent of these were through trucks. Large trucks, tractor trailer units, are even more likely to be through trucks. Approximately 97 percent of the large northbound trucks were identified as through trucks. Similar results were reported for southbound travel. Consequently, approximately 90 percent of the trucks recorded on VT22A south of Vergennes pass through Downtown Vergennes without stopping. Similarly, approximately 98 percent of the large trucks recorded at this location also pass through Vergennes without stopping.

Table 4-1 Truck License Plate Matching Survey Results

	All Tucks			Large Thucks		
Direction	Total	Through Tucks		Total	Through Tucks	
Northbound	131	118	90%	94	91	97%
Southbound	130	115	88%	95	93	98%

Note: Survey data collected by VTranson July 19, 2018 and July 31, 2018.

4.2.2 Traffic Operations

Traffic operations along roadways and at intersectionscan be quantified and reported in tems of operating level of service. Operating levels of service vary by time of day in conjunction with hourly variations in travel demand. Typically, peak hour traffic demands are examined to determine "worst case" operating conditions. As noted above, evening commuter travel demands are higherthan moming peak hour travel demands. Consequently, the PM peak hour intersection operating levels of service were detemined in this study.

Level of service (LOS) is a term used to describe the quality of the traffic flow on a roadway facility at a particular point in time. It is an aggregate measure of travel delay, travel speed, congestion, driverdiscomfort, convenience, and safety based on a comparison of roadway system capacity to roadway system travel demand. Operating levels of service are reported on a scale of A to F, with A representing the best operating conditions with little or no delay to motorists, a nd F representing the worst operating conditions with long delays and traffic demands sometimes exceeding roadway capacity.

Intersection operating levels of service are calc ulated following procedures defined in the Highway Capacity Manual, published by the Transportation Research Board. For signa lized intersections the operating level of service is based on travel delays. Delays can be measured in the field but generally are calculated as a function of traffic volume; peaking characteristic of traffic flow; percentage of heavy vehicles in the traffic stream; type of traffic control; number of tra vel lanes and lane use; intersection approach grades; and, pedestrian activity. Through this a nalysis volume-to-capacity ratios can be calculated for individual movements or for the intersection as a whole. A volume-to-capacity ratio of 1.0 indic ates that a movement or
intersection is operating at its theoretic al capacity. The specific delay criteria applied perthe 2010 Highway Capacity Manual to detemine operating levels of service are summanized in Table 4-2.

Table 4-2 Intersection Level of Service Criteria

	Average Delay per Vehicle (Seconds)	
Level of Senice	Sgnalized Intersections	Unsignalized Intersections
A	≤ 10.0	≤ 10.0
B	10.1 to 20.0	10.1 to 15.0
C	20.1 to 35.0	15.1 to 25.0
D	35.1 to 55.0	25.1 to 35.0
E	55.1 to 80.0	35.1 to 50.0
F	>80.0	>50.0

${ }^{1}$ Level of Service F is also assigned to movements if the volume-to-capacity ratio exceeds 1.0.
Source: HCM 2010 Highway Capacity Manual, Transportation Research Board, National Academy of Sciences, Wa shington, DC, 2010.

Capacity a na lysis results for the major intersections in the study area under existing PM peak hour conditions are presented in Table 4-3 and in Figure 4-7. For the signa lized intersec tions the overall level of service, volume-to-c a pacity ratio and a verage delay are reported. Worksheets provided in the appendix indic ated operating conditions on individual intersection approaches. For the unsigna lized locations, operating conditions on the stop-controlled side street approaches are reported. As shown, the signalized intersections in the study area operate at LOSC orbetter. The unsignalized Panton Road intersection approach to VT22A has the worst operating level of service in the study area, LOSE during the PM peak hour. This a pproach, however, operates well below capacity at 71 percent of capacity.

Table 4-3 Existing PM Peak Hour Intersection Level of Service

Intersection	1051	Delay ${ }^{2}$	V/C ${ }^{3}$
Signalized Locations:			
US 7/VT22A			
Overall	B	10	0.49
Monkton Road/ Main Street			
Overall	B	18	0.53
Green Street/ Main Street			
Overall	B	16	0.74
Monkton Road/ US 7			
Overall	C	23	0.55
Unsignalized Locations			
S. Water St/ Mac Donough Dr./ Main St			
Eastbound (MacDonough)	C	24	0.27
Westbound (S. Water)	D	29	0.37
Panton Road/ VT22A			
Eastbound (Panton Road)	E	36	0.71
Westbound (Elm Street)	A	10	0.01
VT17/VT22A			
Eastbound (VT17)	C	18	0.41
Westbound (VT17)	B	15	0.24
VT17/US 7			
Eastbound (VT17)	B	13	0.11
${ }^{1}$ LOS=Level of Service ${ }^{2}$ Delay =Average delay expressed in seconds ${ }^{3} \mathrm{~V} / \mathrm{C}=$ Volume-to-capacity ratio			

Figure 4-7 Intersection PM Peak Hour Operating Levels of Service

VT22A TRUCK ROUIE STUDY

4.2.3 Crash History

Vehicle crash data for the study a rea is reported in Figure 4-8. This figure locates crashes listed in the VTrans Crash Database fora five-year period, 2013-2017. Figure 4-9 locates crashes involving trucks. Crash counts on roadway segments were compared to the traffic volumes on those segments to calculate crash rates. These crash rates are reported in Table 4-4. As shown, 57 crashes occurred on Main Street in the downtown Vergennes subarea and this subarea has the highest crash rate. This is due to the multiple closely-spaced intersections along this segment and the conflicts associated with tuming and crossing traffic streams at these intersections. No c rashes involving pedestrians or bic yclists were reported in the study a rea in the VTrans database.

Figure 4-8 All Vehicle Crashes (2013-2017)

Figure 4-9 Crashes Involving Trucks (All Types) (2013-2017)

Table 4-4 Crashes and Crash Rates by Subarea

Subarea	Length (miles)	2017 AADT	Crashes (2013- 2017)	Crash Rate 1	Crashes Involving Trucks 2	Crashes Involving Pedestrians or Bicyclists
Downtown Vergennes (Ma in St)	0.5	9800	57	6.37	2	0
VT17	7.4	1700	29	1.27	3	0
VT22A South of Downtown	5.9	5700	51	0.93	1	0
VT22A North of Downtown	1.0	7200	6	0.46	1	0
US7	5.4	7550	62	0.86	4	0

${ }^{1}$ Crashes permillion vehic le miles traveled. ${ }^{2}$ All types of trucks

As noted in Figure 4-8, the downtown Vergennes subarea contains a roadway segment classified by VTransasa High Crash Location (HCL). Another HCL segment is located along US 7 at VT17. A highway segment or intersection must have at least five crashes over a five-year period and the actual crash rate must exceed a critical crash rate calculated for that type of roadway facility based on statewide data to qualify as an HCL. The HCL's shown are based on data for 2012 through 2016. The HCL in downtown Vergennes includes three overlapping 0.3-mile roadway segments. The crash severity indexes for these three segments range from $\$ 13,000$ to $\$ 36,000$. The severity index indicates the average cost percrash with property damage only crashes valued at $\$ 11,300$ per crash, injury crashes valued at $\$ 88,500$ percrash, and fatal crashes valued at $\$ 1,500,000$ percrash. Two of the crashes in the downtown Vergennes subarea involved trucks.

The US 7 HCL is limited to a 0.3 -mile roadway segment where VT 17 crosses US 7 . Twelve crashes occured on this segment over the five-year study period. The approximate average crash seventy is $\$ 38,000$. The crash locatortool indicated that only one crash for the 2013 to 2017 study period occurred within the VT17 West/ US 7 intersection.

4.2.4 Transit

Vergennes and the study area are served by two bus routes operated by two different transit service providers. Green Mounta in Transit (GMT) operates a regional route connecting Burlington and Middlebury principally via US Route 7 with stops in Vergennes and Femisburgh. The Ferisburgh stop is at the Park and Ride lot on VT22A just south of its intersection with US 7. Southbound buses also stop at the Opera House on Main Street in Vergennes. The northbound stop is at Ma in Street on Green Street. Green Mounta in Transit provides weekday service with two round tripsmade during the moming commuter period and two round trips made during evening commuter period.

Addison County Transportation Resources (ACTR) operates the above GMTroute on Saturdays with three round trips provided: one in the moming; one at midday; and, one in the late

VT22A TRUCK ROUTE STUDY

aftemoon. ACTR also operatesthe Tri-Town Shuttle service connecting Vergennes, Bristol and Middlebury. The Vergennes link connects Downtown Vergennes with the New Haven Park and Ride lot on North Street. This route uses US 7 and VT17 east of US 7. On moming runs buses enter downtown Vergennes by way of New Haven Road and Green Street and then retum by way of Monkton Road. In the aftemoon the buses make the loop in the opposite direction. One moming trip and one evening trip also extends out and back from downtown Vergennes to the Collins Aerospace facility on Panton Road. Other trips can be extended upon request. There are four round trips made between Middlebury and Vergennes in the moming and five round trips made in the evening.

4.2.5 Natural and Cultural Resources

A desktop review wascompleted to identify known wetlands, streams, Rare, Threatened or Endangered (RTE) species, agricultural land, 4(f) and 6(f) public lands, and hazardous waste sites in the study area. The Vermont Agency of Natural Resources(ANR) Natural Resources Atlas mapping program ${ }^{3}$ was used to evaluate known natural resources within the three primary subareas. The Addison County Regional Planning Commission GIS data was used to identify archeologic al overlay areas and buildings on the National Registry of Historic Places ${ }^{4}$. Findings are presented in the discussions of individual suba reas below.

4.3 DOWNTOWN VERG ENNES SUBAREA

The downtown Vergennes subarea would be directly and signific antly impacted by each of the altemative actions under consideration. This area includes VT22A (Main Street) and adjacent land uses through downtown Vergennes between Otter Creek to the south and Monkton Road to the north. (Main Street has a southwest/northeast orientation in downtown Vergennes however, VT22A generally hasa south/north orientation from a regional perspective. Consequently, a south/north orientation for Main Street is used in this report.) This a rea would be physic ally altered under Altemative A and experience signific ant changes in through truck traffic volumes under Altematives B and C.

4.3.1 Roadway Conditions

Roadway conditions in this subarea are described below as they define opportunities and constraints relative to potential mobility enha nc ement strategies. Ma in Street in downtown Vergennes is classified as a Minor Arterial. It is considered a primary bike route underthe state's Master Bicycle Plan5.

It is a two-lane roadway with a posted speed limit of 25 miles per hour (mph). The roadway right of way is approximately 66 feet wide. The roadway cross section varies by location with on-street parking conditions varying throughout this segment.

[^1]
VT22A TRUCK ROUIE STUDY

Figure 4-10 summarizes roadway cross sections throughout the study area. Color coding is used to designate roadway segments that provide a standard cross section (minimum 11 feet wide lanes and minimum four feet wide shoulders) suitable for heavy truck traffic. As noted, within the downtown subarea, these design criteria are not met. Rather, the roadway cross section is more consistent with its urban setting and the need to accommodate multiple travel modes. Lane widths meet state standards however, shoulders are either too na rrow, non-existent or used for parking. Within the right of way, on-street parking and sidewalks are provided to meet the needs of the downtown area. From just north of MacDonough Drive to East Street, parallel parking is allowed on the west (southbound) side of the road and head-in, angle parking is allowed on the east (northbound) side. Sidewalks are provided on both sides of the road in this area. Build ing facadesare located within 30 feet of the edge of the traveled way. Outdoordining occurs within this 30 -feet band at several resta urants. North of this core area, parallel parking is a llowed on both sides of VT22A from East Street to School Street and on the west (southbound) side to Monkton Road. South of MacDonough Drive there is only a sidewalk on the east side of the roadway. There are no designated bic ycle accommodations (bike lanes or sha rrow markings) in the downtown Vergennessubarea.

The horizontal roadway alignment in the downtown Vergennes subarea is generally tangent. There is an angle point at the Ma in Street intersection with East Street and a slight curve to the bridge over the Otter Creek. The roadway profile shown in Figure 4-11 indic ates a northbound upgrade of more than 11 percent for 500 feet between Otter Creek and MacDonough Drive and continuing at an approximately ten percent grade a nother 400 feet to Maple Street. The upgrade continues at three percent from Maple Street to East Street.

Within this subarea there are five intersections along Ma in Street. Numerous private driveways enter Ma in Street outside of the core area. Roadway and traffic control conditions at the five major intersections are described below.

Figure 4-10 Roadway Cross Sections

Figure 4-11 Main Street Grade

4.3.1.1 Mac Donough Drive/ South Water Street/ Main Street

An aerial image of the four-way Mac Donough Drive/South Water Street/Ma in Street intersection is provided in Figure 4-12. As shown, Main Street provides one tra vel lane in each direction at this intersection with on-street, parallel parking along the southbound approach. The MacDonough Drive approach (from the west) is under STOP sign control and includes one approach lane. The South Water Street, westbound approach, is also under STOP sign control with a shared through/left-tum lane and a dedicated right-tum lane. An overhead flashing beacon, yellow on Ma in Street and red on the side streets, reinforces the STOP-control condition. Head-in, 90degree parking is allowed for commercial uses on both sides of South Water Street. Crosswalks are provided on the north and east intersection legs. Per Table 4-3 above, this intersection operates at LOSD during the PM peak hour with the longest delays experienced on the South Water Street approach.

Figure 4-12 Mac Donough Drive/ South Water Street/ Main Street Intersection

4.3.1.2 Maple Street/Ma in Street

An aerial image of the four-way Maple Street/Ma in Street intersection is provided in Figure 4-13. As shown, Main Street provides one travel lane in each direction at this intersection with angle parking on the northbound side of the street and parallel parking on the southbound side. South Maple Street is one-way eastbound with parallel on-street parking permitted on the south side of the roadway. North Maple Street is one-way westbound with parallel parking on the north side of the street at the intersection approach. Crosswalks are provided on the south, west and east intersection legs.

Figure 4-13 Maple Street/ Main Street Intersection

4.3.1.3 Green Street/Main Street

An aerial image of the four-way Green Street/Ma in Street intersection is provided in Figure 4-14. As shown, Main Street provides one travellane in each direction at this intersection with angle parking on the northbound side of the street and parallel parking on the southbound side. Green Street west of Main Street is a two-lane, two-way road with angle parking on the westbound side and parallel parking on the eastbound side. Green Street east of Main Street is also a two-lane, two-way roadway with parallel parking on the south side and a Green Mountain Transit bus stop on the north side. The intersection is under traffic signal control. The signal operates with two phases sepa rately serving: north/south vehic ular traffic and east/west vehic ular traffic. Crosswalks are provided on all intersection legs however there are no pedestrian signals at this location. Per Table 4-3 above, this intersection operates at LOSB during the PM peak hour.

Figure 4-14 Green Street/ Main Street Intersection

4.3.1.4 East Street/ Main Street

An aerial image of the East Street/Ma in Street intersection is provided in Figure 4-15. As shown, East Street enters M a in Street from the east to create a T-type intersection. East Street is a oneway roadway and provides one travel lane westbound with parallel parking permitted on the south side. The East Street approach is under STOP sign control. Ma in Street provides one travel lane in each direction. South of the intersection there is angle parking permitted in the northbound direction and parallel parking in the southbound direction. North of the intersection parallel parking is pemitted on both sides. A crosswalk is provided ac ross East Street.

Figure 4-15 East Street/ Main Street Intersection

4.3.1.5 Monkton Road/ Main Street

An aerial image of the three-way Monkton Road/Ma in Street intersection is provided in Figure 416. As shown, Main Street provides one tra vel lane in each direction at this intersection. No parking is allowed on the intersection approaches. Similarly, Monkton Road provides one travel lane in each direction with no parking allowed. The intersection is under traffic signal control. The signal operates with two phases separately serving: Main Street vehic ular traffic and Monkton Road westbound vehic ular traffic. Crosswalks are provided on the south and east intersection legs. PerTable 4-3 above, this intersection operates at LOSB during the PM peak hour.

Figure 4-16 Monkton Road/Main Street Intersection

4.3.2 Natural and Cultural Resources

Land within the downtown Vergennessubarea is heavily developed with limited natural areas. The land along Otter Creek abutting the Downtown Vergennes subarea is within range of two rare bat species. Hazard ous waste sites are identified adjacent to Ma in Street. These sites are mapped in Figure 4-17. Also, some structures along Ma in Street and some parcels adjacent to Otter Creek have historic and archeologic al signific ance.

Figure 4-17 Natural and Cultural Resources - Downtown Vergennes Subarea

4.3.2.1 Wetlands

Since this subarea is primarily developed land, the only areas mapped as wetla nds by the Vemont Signific a nt Wetland Inventory (VSWI) in the subarea are comprised of Otter Creek and adjacent wetlands. Lower Otter Creek is a designated Section 10 waterway under the Rivers and Harbors Act of 1899.

4.3.2.2 Rare or Endangered Species

The Northem Long-eared Bat (Myotis septentrionalis) is a Federally and State listed species known throughout Vermont. No known hibemacula or matemal roosts are known within one mile of the subarea. In addition, the subarea is also within the observed summer range of the Indiana bat (Myotis sodalis), a nother Federally and State listed species. Several additional rare aquatic and terrestrial species are mapped within or along OtterCreek just outside of the subarea.

4.3.2.3 Fammland Soils of Statewide Importance

According to the ANR Natural ResourcesAtlas, there are soils within the Downtown Vergennes subarea mapped as Fa mland Soils of Statewide Importance. State policy applying to these soils, the Farmland Policy Protection Act, does not apply to projects within existing roadway rights-ofway or urbanized a reas.

4.3.2.4 Historic Resources

According to the 2014-2019 Vergennes Municipal Development Plan, the Vergennes Ma in Street Historic District is listed in the National Register of Historic Places. It inc ludes archeologic ally sensitive areas of $18^{\text {th }}$ and $19^{\text {th }}$ century military occupation, including parcels along Otter Creek known as Mac Donough's Shipyard and Fort William, as well as locations signific ant from the War of 1812.

4.3.2.5 Public Lands

The Downtown Vergennes Study Area does not include public lands developed with Land and Water Conservation Funds (LWCF, a Section 6(f) resource), but the Vergennes Falls Park adjacent to Otter Creek just downstream of the dam and VT22A was developed, in part, with LWCF funds.

4.3.2.6 Hazardous Waste Sites

The ANR Natural Resourc es Atlas was reviewed for information on Hazardous Waste Sites. A few loc ations adja cent to the Ma in Street are considered Haza rdous Sites or Haza rdous Wa ste Generators. In urban a reas these sites are typic ally associated with gas stations or other uses featuring hazardouschemicals.

4.4 VT22A SUBAREA (OUISIDE DOWNTOWN VERGENNES)

The VT22A Subarea includes sections of VT22A outside downtown Vergennes as noted in Figure $4-1$. As shown, it includes a one-mile segment between US 7 and Monkton Road and six-mile segment between Otter Creek and VT17. The north segment is relevant to thisstudy as it is expected that for the New Alignment altemative, the northem teminus of the new roadway would intersect this section of VT22A. Simila lly, the southem terminus of the new a lignment roadway would intersect VT22A south of the downtown subarea.

VT22A TRUCK ROUIE STUDY

4.4.1 Roadway Conditions

The northem section of the VT22A (Outside Downtown Vergennes subarea) is a two-lane, twoway roadway classified as a minor arterial. The roadway cross section referenced above in Figure 4-10 varies by location. From Monkton Road to the Vergennes Police Station (just south of the railroad underpass) the cross section is substandard for truck traffic. The roadway is approximately 30 feet wide with 12 feet wide travel lanes and three feet wide paved shoulders. The posted speed limit is 30 mph . There are sidewalks on both sides of the roadway from the downtown area to approximately 1100 feet north of Monkton Road. North of this location the sid ewa lk continues only on the east side of the roadway for a nother 1600 feet to an enhanced crosswalk at the police station. The roadway shoulders widen north of the police station such that the section under the railroad and leading to US 7 satisfies VTrans standards for accommodating truck traffic.

Multiple commercial and residential driveways enter this roadway segment. The Ferisb urgh Park and Ride driveway meets VT22A north of the railroad underpass and opposite MeigsRoad at a two-way, STOP-control intersection.

The southem section of the VT22A subarea is also a two-lane, two-way roadway classified as a minor arterial. The roadway cross section varies as noted above in Figure 4-10. Within Vergennes the roadway istypic ally 24 feet wide with no paved shoulders. The posted speed limit is 30 mph and abutting land uses are residential. There are sidewalks on both sides of the roadway from Otter Creek south to Panton Road. South of Panton Road the sidewalk continues on the east side only to Hopkins Road. This segment is on a long northbound downgrade leading to Otter Creek. South of the Vergennes City limit the roadway widens to approximately 32 feet with 11 feet wide travel lanes and five feet wide shoulders. The speed limit increases to 50 mph . The alignment is generally tangent through rolling terrain. Abutting land uses are low density residential and agricultural.

4.4.1.1 US 7/VT22A

The VT22A intersection with US 7 is the only major intersection located in the northem segment of this subarea. An aerial image of the intersection is provided in Figure 4-18. The VT22A intersection with US 7 is under traffic signal control. This intersection includes separate lanes for all tuming movements: one left-tum lane and one right-tum lane on VT22A; one left-tum lane and one through lane on US 7 northbound; and, one channelized right-tum lane and one through lane on US 7 southbound. The signal operates with two phases serving US 7 and VT22A approaches separately. There are no sidewalks or pedestrian signal indic ators at this intersection. PerTable 4-3 above, this intersection operates at LOS B during the PM peak hour.

Figure 4-18 VT22A/ US 7 Intersection

4.4.1.2 Panton Road/VT22A

Panton Road enters VT22A from the west approximately 1200 feet south of the Otter Creek and opposite Elm Street to form a four-way intersection. There are single approach lanes on each leg of the intersection as shown in Figure 4-19. The Panton Road and Elm Street approaches are under STOP sign control. An overhead beacon provides a flashing red indication forthe side streets and flashing yellow for VT22A. There are sidewalkson at least one side of each leg of the intersection and crosswalks on the east, north and west legs. A sidewalk on the north side of Panton Road continues west a pproximately 2000 feet to First Street passing the Collins Aerospace facility. This is a majoremployer in the area and major traffic generator. Per Table 4-3 above, this intersection operates at LOSE during the PM peak hour with the longest delays experienced on the eastbound approach.

Figure 4-19 Panton Road/VT22A Intersection

4.4.1.3 VT17/VT22A

Approximately six miles south of the Otter Creek, VT17 crosses VT 22A in Addison. At this four-way intersection STOP sign control is provided on the VT17 a pproaches reinforced with overhead flashing red beaconson VT17 and flashing yellow beacons on VT22A. All intersection approaches have a single lane as shown in Figure 4-20. There are no sidewalks or crosswalks present at this intersection. Abutting land uses include a church, a general store, a commercial/agric ultural business and a residence. Per Table 4-3 above, this intersection operates at LOSC during the PM peak hour with the longest delays experienced on the eastbound approach.

Figure 4-20 VT17/VT22A Intersection

VT22A TRUCK ROUIE STUDY

4.5 VT17 SUBAREA

The VT17 Subarea includes the 7.3-mile section of VT17 between VT22A in Addison and US 7 in New Haven. Under Altemative C, this roadway section would camy the through truck traffic that now passesthrough downtown Vergennes on VT22A. The roadway would also be upgraded to accommodate the new truck traffic.

4.5.1 Roadway Conditions

VT17 is a two-lane, two-way roadway. VTrans Route Logsclassify the roadway as a minorarterial however, a 2018 updated VTrans highway functional classific ation map identifies certa in sections in New Haven and Weybridge as major collectors. The typic al roadway section as noted in Figure 4-10 includes two 11-feet wide travel lanes and two to three feet wide paved shoulders within a 65.5 -feet right-of-way. The bridge over Otter Creek was recently reconstructed. The bridge now includes 11 -feet wide travel la nes and four-feet wide shoulders. The roadway is generally posted for 45 mph however, lower, advisory speed limits are posted at sham horizontal and vertical curves. Sharp horizontal and vertical curves are located in Figure 421. Seven locations are noted where vertical grades along the roadway exceed six percent and at three of these locations grades exceed ten percent. Finally, there are four cross streets, Otter Creek Road Eastbound, Hallock Road Eastbound, Pearson Road Westbound and Daniels Road Westbound where a combination of vertic al grades, horizontal curvature and/or roadside obstructions result in unsafe sight lines for a 45 -mph driving speed.

Figure 4-21a VT17 Design Deficiencies

Figure 4-21b VT17 Design Deficiencies

Figure 4-21c VT17 Design Deficiencies

Figure 4-21d VT17 Design Deficiencies

Figure 4-21e VT17 Design Deficiencies

4.5.1.1 VT17/US 7

The VT17 enters US 7 from the west to form an unsignalized T-type intersection. The VT17 approach is under STOP sign control. There is a railroad crossing on the US 7 south leg of the intersection as shown in Figure 4-22. The railroad crosses US 7 at an angle such that the tracks meet US 7 directly opposite the VT17 eastbound approach. All approaches have overhead railroad wa ming lights. The westbound and southbound approaches are single lane approaches. The northbound US 7 approach has a through lane and a dedicated left tum lane for traffic destined to VT17. Just north of the intersection there is a climbing lane on US 7 to accommodate slow moving trucks on an uphill grade. There are no sidewalks or crosswalks at this intersection. Abutting land uses include a former railroad depot on the east side of the intersection, an auto repair center north of VT17 and undeveloped land south of VT17. Phoenix Feeds operates from the former railroad depot and generates signific ant truck traffic. Per Table 4-3 above, this intersection operates at LOSB during the PM peak hour. One crash was reported at this intersection over the 2013 to 2017 survey period. As reported above, the 0.3 -mile segment of US 7 that passes through this intersection was classified as a High Crash Location segment by VTrans for the period 2012 to 2016. There are no apparent sight distance constraints at this location.

Figure 4-22 VT17/US 7 Intersection

VT22A TRUCK ROUTE STUDY

4.5.2 Natural and Cultural Resources

The Route 17 subarea includes VSWI wetla nds and streams. Otter Creek in this area is a designated Section 10 waterway under the Rivers and Harbors Act of 1899. Several rare species have been identified within this subarea and it is within range of two rare bat species. In addition, the subarea includes Prime Agric ultural Soils and Agric ultural Soils with Statewide Signific ance. There are older structures along VT17 that may have historic signific ance. Fina lly, this subarea includes mapped Hazardous Waste Sites. Natural and cultural resources located within or adjacent to this subarea are mapped in Figures 4-23 and 4-24.

Figure 4-22 Natural and Cultural Resources - VT17 Subarea

Figure 4-23 Agric ultural Soils Mapping - VT17 Subarea

4.5.2.1 Wetlands

There are severaIVSWI wetlandsadjacent to Route 17 in the subarea. In addition, Route 17 crosses over Otter Creek and wetlands adjacent to it. Several other strea ms and tributa ries cross under Route 17, including tributaries to Otter Creek, Mud Creek, and Little Otter Creek.

4.5.2.2 Rare or Endangered Species

Several rare speciesare mapped within the subarea. The Northem Long-eared Bat is a Federally and State listed species known throughout Vermont. No known hibemacula or matemal roosts are known within one mile of VT17. This subarea is also within the obsenved summer range of the Indiana bat, a nother Federally a nd State listed species, and this species was historic ally found in this area. Several rare species are mapped within or along Otter Creek in the subarea.

VT22A TRUCK ROUIE STUDY

4.5.2.3 Farmland Soils of Statewide Importance

There are soils within the subarea mapped as Prime Agric ultural Soils and Fa mla nd Soils of Statewide Importance. The Farmland Policy Protection Act does not apply to projects within existing highway right-of-way. If any work is proposed outside of existing right-of-way, authorization from the NRCS via form CPA-106, the Farmland Conversion Impact Rating form for comidor projects, may be required.

4.5.2.4 Historic Resources

Just to the west of this Subarea is the Addison Baptist Church, which is on the National Registry of Historic Places. It qualifies as a Section 4(f) resource. To the east of Route 7, just east of this Subarea is the New Haven Junction Depot, a nother Section 4(f) resource. Some structures within this Subarea have historic significance.

4.5.2.5 Public Lands

The Route 17 subarea does not include known historic or public recreation lands (Section 4(f) resources) or public lands developed with Land and Water Conservation Funds (Section 6(f) resources).

4.5.2.6 Hazardous Waste Sites

A few locations at the west and east ends of the VT17 subarea are considered Hazardous Sites or Hazardous Waste Generators.

4.6 US 7 SUBAREA

US 7 between VT17 in New Haven and VT22A in Ferisburgh would camy through truck traffic that now passes through downtown Vergennes on VT22A under Altemative C. This is a 5.3 -mile roadway segment.

4.6.1 Roadway Conditions

US 7 is a two-lane, two-way roadway classified as a major arterial. The typical roadway section as noted in Figure 4-10 includes two 12 -feet wide travel lanes and five-feet wide paved shoulders. The terra in is generally rolling and climbing lanes are provided on steeper sections as noted in Figure 4-10. One such section is on US 7 northbound just north of its intersection with VT 17. The roadway is generally posted for 50 mph however, a lower speed, 40 mph is posted in advance of the VT17 intersections. The major intersections along the roadway include junctions with VT22A at the northem end of the study a rea and VT17 at the southem end of the study area. (These two intersectionswere described above.) Monkton Road crosses US 7 at a signalized intersection near the northem end of the study area. There are at-grade rail crossings of US 7 at the VT17 intersections and just north of Monkton Road. The roadway passesthrough a

VT22A TRUCK ROUIE STUDY

rural area. Abutting land uses including agric ultural land, low-density residential development, undeveloped land, and commercial properties.

4.6.1.1 Monkton Road/ US 7

Monkton Road crosses US 7 a pproximately 0.9 miles south of the VT22A/US 7 intersection. The intersection is under traffic signal control. As shown in Figure 4-25, the eastbound and westbound Monkton Road approaches are single lane approaches. The northbound US 7 approach hasa through lane and a dedicated left tum lane. The southbound US 7 approach has three lanes with a right-tum lane, a through lane and left-tum lane. The signal provides protected intervals for US 7 left tum movements. There are no sidewalks or crosswalks at this intersection. Abutting land uses are commercial in all four quadrants including a solarfarm in the southwest quadrant. Per Table 4-3 above, this intersection operates at LOSC during the PM peak.

Figure 4-24 Monkton Road/ US 7 Intersection

4.7 NEW ALGNMENTSUBAREA

An alignment fora new roadway that would circumvent downtown Vergennes to the west and north has been assumed for a nalysis purposes. The assumed a lignment, shown in Figure 4-26 would leave VT22A near the Vergennes/Panton municipal boundary to the south and rejoin VT 22A just south of the existing railroad underpass. The roadway would cross over the Otter Creek and have at-grade intersections with Panton Road, MacDonough Drive and Comfort Hill Road. A 32-feet wide roadway cross section is assumed, matching the US 7 cross section. The roadway would be constructed within a minimum 60 -feet wide right-of-way. The assumed roadway a lignment indicates a 2.6-mile new roadway. The assumed roadway alignment is just one of several alignments that could be considered and does not represent a recommended a lignment. It is presented and a nalyzed to help quantify the costs and benefits that would be associated with such a roadway.

4.7.1 Roadway Conditions

As noted above, a 32-feet wide roadway is assumed. It would be designed to VTrans standards for a major arterial with a design speed of 45 mph . By design, the posted speed limit, roadway length, and traffic controls at proposed intersections, would result in a longer traveltime for passenger cars relative to travel on VT22A through downtown Vergennes. New intersections would be constructed at the three roadway crossings referenced above.

4.7.2 Traffic Volumes

Vehic ular traffic volumes on Panton Road, MacDonough Drive and Comfort Hill Road will influence the design of the intersections of these roadways with the New Alignment roadway. As presented above, the daily traffic volume is 4100 vehic les on Panton Road. Intersection tuming movement counts for the MacDonough Drive/Ma in Street intersection indicate a daily volume of a pproximately 600 vehic les on MacDonough Drive in the vic inity of the proposed New Alignment c rossing. Traffic count data are not available for Comfort Hill Road. Volumes on this roadway are assumed to be comparable to the volumes on MacDonough Drive.

4.7.3 Zoning/ Land Use

Figure 4-26 shows the proposed New Alignment roadway passing through multiple zoning districts in the City of Vergennes. The Industrial District and two medium density residential districts are crossed at the southem end of the a lignment, south of Otter Creek. North of Otter Creek the roadway would pass through the Agricultural and Rural Residential District and could have contact with the Public District. The northem terminus of the New Alignment Roadway is in the Northem Gateway District. As shown, the assumed roadway alignment puposely a voids developed parcels to the extent possible. However, it is likely that several residential properties would be impacted south of the Otter Creek. The New Alignment abuts the NorthlandsJob Corps Facility, operated by a contractor to the USDepartment of Labor on landsowned by the State of Vermont on MacDonough Drive.

Figure 4-25 New Alignment Subarea and Land Use Conditions

VT22A TRUCK ROUIE STUDY

4.7.4 Natural and Cultural Resources

The New Alignment subarea is principa lly undeveloped or fa mland. The Altemative Alignment subarea includes VSWI wetlands and streams. Several rare species have been identified within this subarea, and it is within range of two rare bat species. In addition, the subarea includes Prime Agric ultural Soils and Agric ultura I Soils with Statewide Sig nific ance. Fina lly, this subarea includesconserved lands with easements granted to the Vermont Land Trust. Natural and cultural resources located within or adjacent to this subarea are mapped in Figures 4-27 and 428.

Figure 4-26 Natural and Cultural Resources - New Alignment Subarea

Figure 4-27 Agric ultural Soils Mapping - New Alignment Subarea

4.7.4.1 Wetlands

The Altemative Alignment subarea is sparsely developed with farms and residences. The undeveloped areasinclude a mixture of farmland, forest, shrub, and grass habitats, as well as the Otter Creek floodplain. There are several VSWI wetlands within the subarea. In addition, this a lignment crosses over Otter Creek and wetlands adja cent to it. Several other streams and tributa nes c ross this a lignment.

4.7.4.2 Rare or Endangered Species

Several rare species are mapped within or along Otter Creek in the subarea. In addition, the Northem Long-eared Bat is a Federally and State listed species known throughout Vermont. No known hibemacula or matemal roosts are known within one mile of the subarea. The subarea is

VT22A TRUCK ROUIE STUDY

also within the observed summer range of the Indiana bat, another Federally and State listed species.

4.7.4.3 Farmland Soils of Statewide Importance

There are soils within the subarea mapped as Prime Agric ultural Soils and Fa mland Soils of Statewide Importance.

4.7.4.4 Historic Resources

There are no historic resourcesmapped in the New Alignment subarea.

4.7.4.5 Public Lands

The Altemative Alignment subarea does not include known public recreation lands (Section 4(f) resources) or public lands developed with Land and Water Conservation Funds (Section 6(f) resources). However, it doescross conserved lands with easements granted to the Vemont Land Trust.

4.7.4.6 Hazardous Waste Sites

There are no Hazardous Waste Sites mapped within the Altemative Alignment subarea.

5.0 FUTURE CONDIIONS

Existing traffic conditions in the study area were projected to a future design year of 2043 for the more critical peak hour, the PM peak hour. The 2043 design year reflects a 25 -year forec ast consistent with the VTrans Project Development Process guid elines for roadway projects. Intersection operations analyses were conducted applying the projected future traffic volumes and associated roadway system changes. The scenarios a nalyzed include:

- No Build;
- Altemative A - In Line Altemative;
- Altemative B - New Alignment Altemative;
- Altemative C - VT17 Truck Route; and
- Altemative B - New Alignment Altemative with Induced Development.

Traffic and roadway assumptions for each scenario are described below.

5.1 NO BUID CONDITION

The No Build condition assumes that no changes are made to the existing transportation system. It is simply assumed that traffic volumes inc rease in accordance with traffic forecasts develop by VTrans. The VTrans Redbook compilestraffic data from continuous count stations a round the state and uses the data to forec ast future traffic growth rates. The Redbook antic ipates traffic growth of 11 percent by the 2043 design year. This rate was applied to existing non-truck traffic on the roadway network. The VTrans freight study predictsa 50 percent increase in truck volumes by 2043. The 50 percent factor was accordingly applied to existing truck trips. The combined effect is an overall 13 percent increase in existing PM peak hour volumes on the traffic network by 2043. The predic ted 2043 No Build PM peak hour volumes are shown in Figure 5-1.

Figure 5-1 Figure 2043 No Build PM Peak Hour Traffic Volumes

5.2 ALTERNATIVE A - IN UNE ALTERNATIVE

Under Altemative A, traffic volume forecasts are the same asfor the No Build condition. There is potential for a modest a mount of existing freight shipments to shift from truck to rail under Altemative A however, the shift would occurgradually overtime and would not be large enough to signific antly impact peak hour operations. Assumed roadway and traffic control conditions under Altemative A are consistent with existing conditions except for one change. Signa lization of the Panton Road/Elm Street/VT22A intersection is a ssumed.

5.3 ALTERNATIVE B - NEW ALTERNATIVE ALGNMENT

Traffic forecasts forthe New Alignment altemative, Altemative B, build upon the No Build traffic forecasts described above. For Altemative B, the 2043 No Build traffic volumes were adjusted to reflect possible traffic reassignments with a new roadway in place. Estimated future through truck traffic volumes passing through downtown Vergennes were reassigned to the suggested new roadway. Also, some non-truck traffic using Panton Road wasalso assigned to the new roadway as the roadway would create a shortcut between VT22A north and south of downtown Vergennes and Panton Road. 80 percent of the vehic le trips between Panton Road and VT22A south of Panton Road were reassigned to the New Alignment roadway. Likewise, 20 percent of the trips between Panton Road and VT22A north of Panton Road were assigned to the New Alignment roadway. Projected 2043 PM peak hour traffic volumes for Altemative B are shown in Figure 5-2.

Figure 5-2 2043 Altemative B PM Peak Hour Traffic Volumes

Future roadway conditions a ssumed for Altemative B include the new traffic signal at Panton Road considered for Altemative A and construction of the proposed new alignment roadway. Construction of the new alignment roadway will create new intersections that were a nalyzed as well. These include intersections with MacDonough Drive and Panton Road. For these two intersections, single lane approaches under STOP sign control are assumed for the New Alignment roadway. Another two intersections are added north and south of downtown Vergennes where the New Alignment roadway would meet with VT22A. For the northem intersection, the assumed geometry includes a single approach lane on the New Alignment Roadway and a dedicated southbound right-tum lane on VT22A. For the southem intersection, the assumed geometry includes a single approach lane on the New Alignment Roadway and a

VT22A TRUCK ROUIE STUDY

dedicated northbound left-tum lane on VT22A. The new alignment roadway will also intersect Comfort Hill Road. Conditions at this intersection were not a nalyzed however, Comfort Hill Road is a relatively low-volume roadway such that operations at its intersection with the new alignment roadway would be comparable to or betterthan conditions at the new alignment roadway/McDonough Drive intersection.

5.4 ALTERNATIVE C - VT17 TRUCK ROUIE

Traffic forecasts for the Altemative C also build upon the No Build traffic forecasts described above. For Altemative C, the 2043 No Build traffic volumes were adjusted to reflect the reassignment of future through truck traffic volumespassing through downtown Vergennes to an altemative route by way of VT17 and US 7 . From a roadway perspective, the future operations analyses assume signa lization of the Panton Road/Elm Street/VT22A intersection as proposed under Altemative A. The predic ted 2043 Altemative C PM Peak Hourtraffic volumesare shown in Figure 5-3.

Figure 5-3 2043 Altemative C PM Peak Hour Taffic Volumes

5.5 ALTERNATIVE B WTH INDUCED DEVEIOPMENT

A final future roadway a nd traffic scenario analyzed builds up on the Altemative B scena rio. This additional scena rio, Altemative B with Induced Development, assumes that construction of the New Alignment roadway will lead to new development along the roadway and that this new development will increase area traffic demands. Forthis scenario, Altemative B traffic volumes were inc reased to account for potential new development. The potential new development vehicle trips were assigned to the roadway network and combined with the forecasted Altemative B volumes to create the Altemative B with Induced Development traffic conditions.

VT22A TRUCK ROUIE STUDY

New development related traffic forecasts are based on an assumed land use plan for properties abutting the possible bypass roadway. The economic impact analyses provided in this study considers several possible future land use conditions along the New Alignment roadway. For the traffic a nalysis, a simplified approach was applied. The existing Collins Aerospace facility on Panton Road wasused asa template for assumed future development. Based on an examination of potential development sites along the possible bypass roadway it was assumed that four new comparable facilities could be built. Traffic forecasts for four new facilities were developed and assigned to the roadway system. Traffic volume data for Exchange Street in Middlebury, a nearby roadway providing access to a mix of commercial development, was then examined to check the validity of the traffic forecasts.

As noted, the existing CollinsAerospace facility was used as model for projecting future site traffic. Vehic le trip generation rates published by the Institute of Transportation Engineers (ITE) were applied to this facility. The Collins Aerospace facility occupies approximately 25 acres. Based on ITE vehic le trip generation rates published in Trip Generation, 9th Edition, the 25-acre property generates approximately 215 PM peak hour vehic le trips with 80 percent of the trips entering the site and 20 percent of the trips exiting the site. (These estimates a re consistent with the existing peak hour traffic volumes reported on Panton Road assuming that most of Collins Aerospace facility traffic passes through the Panton Road/VT22A intersection.) Building another four developments, similar to the Collins Aerospace facility, would generate approximately 800 new PM peak hour trips. These estimated trips were assigned to the suggested future roadway network according to the trip distribution pattem shown in Table 5-1. This pattem reflects existing tra vel demandson the transportation system. The resulting future PM peak hour traffic flows for Altemative B with Induced Development are shown in Figure 5-4. This indic ates a peak hour volume of 440 vehic lesper hour on the New Alignment roadway where it meets VT22A north of downtown Vergennes. This forec ast is reasonable when compared to volumes on Exc hange Street in Middlebury. Exchange Street, a 1.5-mile roadway providing access to a mix of industrial and institutional uses, ca mies a pproximately 350 PM peak hour vehic le trips.

Table 5-1 Tip Distribution Pattem for Potential New Development Along the New Alignment Roadway

Origin/ Destination	Route	Percentage of New Trafiic
US 7 North of Vergennes	Via New Alignment Roadway and VT22A	30%
Monkton Road East of US7	Via New Alignment Roadway, VT22A and Monkton Road	5%
Panton and West	Via New Alignment Roadway and Panton Road	15%
Vergennes and Waltham	Via New Alignment Roadway, Mc Donough Drive and South Water Street	5%
VT22A South of Addison	Via New Alignment Roadway and VT22A	15%
VT17 West of Addison	Via New Alignment Roadway and VT22A	15%
US7 South of VT17	Via New Alignment Roadway, VT22A and Monkton Road	15%
Total	100%	

Figure 5-4 2043 Altemative B with Induced Development PM Peak Hour Traffic Volumes

Assumed roadway conditions for the Altemative B with Induced Development traffic scenario a re similar to those assumed for Altemative B (without induced development) with one exception. For Altemative B with Induced Development it is assumed that the New Alignment Roadway/VT22A intersection north of downtown Vergennes is under traffic signal control. (The bypass road approach to this intersection would operate at LOSF under PM peak hour conditions without traffic signal control.)

VT22A TRUCK ROUIE STUDY

5.6 FUTURE TRAFFC OPERATIONS

The traffic operations a nalysis for future conditions are reported in Table 5-2 and compared to results for existing conditions. Key findings from the operations analysis are desc ribed below.

5.6.1 No Build Condition

Assumed traffic growth under No Build conditions measurably changes PM peak hour traffic operations at three locations.

- PM peak hour delays on the critical South Water Street approach to Main Street inc rease from 29 sec onds (LOSD range) to 46 sec onds (LOSE range). Even under No Build conditions however, the South Water Street approach operates at only 56 percent of capacity.
- Operations on the Panton Road eastbound approach to Main Street decline from LOSE to LOS F with demands reaching 93 percent of capacity.
- Traffic operations on the westbound VT17 approach to VT22A decline from LOS B to LOS C.

5.6.2 Altemative A

Traffic volume conditions under Altemative A are the same as under the No Build condition. Consequently, intersection operating levels of service are the same under Altemative A conditionsas they are under No Build conditions expect where traffic control changes are proposed. For Altemative A, a new traffic signal is proposed at the Panton Road/VT22A intersection improving PM peak hour operationsfrom LOSF to LOSB.

5.6.3 Altemative B

Under Altemative B traffic volumes on Main Street in downtown Vergennes are lowerthan expected under No Build conditions as nearly all truck traffic and some passenger cartraffic are diverted to the bypass roadway. With the traffic diversions, downtown intersections operate slightly better than they would under No Build conditions as evidenced by lower volume-tocapacity ratios. The new intersections created by the bypass roadway would all operate at LOS C orbetter.

Table 5-2 Future PM Peak Hour Intersection Levels of Senvic es

	Existing			No Build			Altemative A In-Ine			Altemative B New Alignment			Altemative C Route 17 Bypass			Altemative B With Induced Development		
Intersection/ Approach(es)	LOS	Delay ${ }^{2}$	V/C ${ }^{3}$	Los	Delay	V/C	105	Delay	V/C	LOS	Delay	V/C	LOS	Delay	V/C	105	Delay	V/C
Signalized Locations:																		
US 7/VT22A																		
All	B	10	0.56	B	11	0.62	B	11	0.62	B	11	0.62	B	10.2	0.62	B	17	0.80
Monkton Road/Main Street																		
All	B	18	0.53	C	21	0.60	C	21	0.60	B	19	0.55	B	20	0.58	B	19	0.55
Green Street/ Main Street																		
All	B	12	0.67	B	15	0.77	B	15	0.77	B	14	0.70	B	14	0.74	B	14	0.70
Monkton Road/ US 7																		
All	C	24	0.45	C	25	0.52	C	25	0.52	C	25	0.52	C	26	0.53	C	28	0.58
Unsignalized Locations																		
S. Water St/ Mac Donough Dr./ Main St.																		
Westbound (Existing)	D	29	0.37	E	46	0.56	E	46	0.56	D	32	0.43	E	39	0.50	E	40	0.54
All (Signalized)	-	-	-	-	-	-	B	19	0.54	B	17	0.49	B	18	0.52	B	17	0.51
Panton Road/ VT22A ${ }^{4}$																		
Eastbound (Panton Road)	E	36	0.71	F	71.0	0.93	-	-	-	-	-	-	-	-	-	-	-	-
Westbound (Elm Street)	A	10	0.01	A	10	0.01	-	-	-	-	-	-	-	-	-	-	-	-
All							B	16	0.65	B	14	0.53	B	15	0.62	B	14	0.53
VT17/VT22A																		
Eastbound (VT17)	C	18	0.41	C	22	0.52	C	22	0.52	C	22	0.52	C	20	0.49	F	54	0.82
Westbound (VT17)	B	15	0.24	C	17	0.30	C	17	0.30	C	17	0.30	C	18	0.37	C	24	0.41
VT17/US 7																		
Eastbound (VT17)	B	13	0.11	B	14	0.14	B	14	0.14	B	14	0.14	D	27	0.35	C	16	0.16
Mac Donough Dr/ New Alignment Roadway																		
Northbound (New Roadway)	-	-	-				-	-	-	B	11	0.11	-	-	-	B	11	0.22
Southbound (New Roadway)	-	-	-				-	-	-	B	11	0.11	-	-	-	C	18	0.60
Panton Road/ New Alignment Roadway																		
Northbound (New Roadway)	-	-	-				-	-	-	C	16	0.19	-	-	-	E	42	0.58

	Existing			No Build			Altemative A In-line			Altemative B New Alignment			Altemative C Route 17 Bypass			Altemative B With Induced Development		
Intersection/ Approach(es)	10s	Delay ${ }^{2}$	V/C ${ }^{3}$	105	Delay	V/C	LOS	Delay	V/C	105	Delay	V/C	105	Delay	V/C	LOS	Delay	v/C
Southbound (New Roadway)	-	-	-				-	-	-	B	12	0.13	-	-	-	D	35	0.79
VT22A North/ New Alignment Roadway ${ }^{5}$																		
Eastbound (New Roadway)	-	-	-				-	-	-	C	18	0.21	-	-	-	-	-	-
All	-	-	-				-	-	-	-	-	-	-	-	-	B	13	0.56
VT22A South/ New Alignment Roadway																		
Eastbound (New Roadway)	-	-	-				-	-	-	B	10	0.12	-	-	-	B	13	0.40

${ }^{1}$ LOS $=$ Level of Service
${ }^{2}$ Delay = Average delay expressed in secondsper vehicle
${ }^{3} \mathrm{~V} / \mathrm{C}=$ Volume-to-capacity ratio
${ }^{4}$ Intersection is unsigna lized under Existing and No Build conditions and assumed to be signalized for Altematives A, B and C. 5 Intersection is unsigna lized except under Altemative B with Induced Development

VT22A TRUCK ROUIE STUDY

5.6.4 Altemative C

Altemative C will also lower traffic volumes slightly on Main Street in downtown Vergennes as nearly all truck traffic would be diverted from this roadway segment. Again, downtown intersections will exhibit slightly lower volume-to-capacity ratios relative to No Build conditions. At intersections along US 7 where traffic volumes are expected to increase as a consequence of the truck reassignments, only one location is expected to experience a decrease in the operating level of service. Operations on the eastbound approach of VT17 to US 7 dec line from LOS B under No Build PM peak hour conditionsto LOSD under Altemative C conditions. The volume-to-capacity ratio on the eastbound VT17 approach to US 7 remains well below one at 0.35 under Altemative C PM peak hour conditions.

5.6.5 Altemative B with Induced Development

Under Altemative B there is potential for parcelsalong the bypass roadway to be developed or redeveloped in ways that could substantially inc rease traffic demands on the study area roadway system. When these added traffic demands are considered, several intersections are expected to experience lower operating levels of service relative to the Altemative B scenario with no induced development. The expected changes are noted below.

- The VT17/VT22A intersection eastbound approach operates at LOSC under future PM peak hour conditions under Altemative B and at LOS F under Altemative B with Induced Development traffic. The volume-to-capacity ratio on this approach will remain below one at 84 percent.
- The VT17/US 7 intersection eastbound approach operates at LOS B under future PM peak hour conditions under Altemative B and at LOSC under Altemative B with Induced Development.
- The bypass road southbound approach to MacDonough Drive will experience a decline in level of service from LOSB to LOSC with Induced Development under Alterative B.
- The bypass road approachesto Panton Road are expected to operate at LOSC or better during the PM peak hour under Altemative B. With Induced Development under Altemative B the northbound approach would operate at LOSE and the southbound approach would operate at LOSD.
- The new alignment roadway northbound approach to VT22A north of downtown Vergennes operates at LOSF during the PM peak hour with travel demands exceeding capacity under Altemative B with Induced Development.

5.6.6 Recommendations

Based on the intersection ca pacity a nalysis results certa in actions are recommended.

VT22A TRUCK ROUIE STUDY

- Under No Build conditions, some PM peak hour congestion (LOSE operations), is expected at the McDonough Drive/South Water Street/Main Street intersection. Signa lization would address the congestion issue as noted in a prior study however, it may also worsen Main Street traffic operations by requining trucks and passengercarsto stop on a steep grade. Consequently, a "wa it and see" strategy is recommended for this loc ation. It is recommended that traffic signal conduit to be installed at this intersection to facilitate future installation of a signal should the need become more apparent in the future.
- The a na lysis results indicate that traffic control improvements are wa rranted at the Panton Road/Elm Street/VT22A intersection to address PM peak hour congestion under No Build conditions. Installation of a traffic signal ormodem roundabout is recommended asproposed in a priorstudy.
- For Altemative A, no additional improvements a re wa rranted based on the operations a nalysis other than those recommended above for No Build conditions. Traffic signal control is a ssumed for the Pa nton Road/Elm Street/VT22A intersection when a nalyzing traffic operations under Altemative A.
- For Altemative B, STOP-controlled intersections with MacDonough Drive, Pa nton Road and VT22A (north and south) will provide adequate capacity. No additional improvements are warranted based on the operations analysis other than those recommended above for No Build conditions.
- For Altemative C, va rious improvements a re proposed a long VT17 to improve its traffic camying capacity and safety. No additional improvements are warranted based on the operations a nalysis other than those recommended above for No Build conditions. (These include installing traffic signal conduit at the McDonough Drive/Ma in Street intersection and installing a signal at the Panton Road/Main Street intersection.
- For Altemative B with Induced Development the operations a nalysis indicates that congestion issues may a rise if the a ssumed new development is realized. The assumed new development and related traffic growth would occur gradually over an extended period. Consequently, there will be a dequate opportunity to monitor traffic operations before taking action. Future monitoring should be conducted to determine the need for:
o Enhanced traffic controls (signalization) at the VT17/VT22A intersection where LOSF operations are projected for the PM peak hour,
o Enhanced traffic controls (signalization) and/or added la nes at the proposed bypass road/Panton Road intersection where LOS E operations are projected for the PM peak hour, and,
o Installation of a traffic signal at the proposed bypass road/VT22A North intersection assuming that a roundabout is not built at this location.

VT22A TRUCK ROUIE STUDY

6.0 PURPOSE AND NEED

The evaluation of altemative actions is guided by a Purpose and Need Statement. The VTrans 2017 Project Definition Process Guidebook for Highway Division Projects defines a Pup ose and Need Statement as"a problem statement used to define the reasonsfor the project and its goals, or what it hopesto accomplish or correct". The Purpose component "defines the transportation problem to be solved, and outlinesthe goals and the objectives of a specific project." The Need component "identifies the transportation problem(s) to be addressed; defines causes of existing problems; and uses factual, quantifiable data to the extent possible to explain the asset or system need".

The Purpose and Need Statement of the J uly 2002 Greater Vergennes Traffic Impact Feasibility Study Needs Assessment, which was developed through an extensive community engagement process, was used as the starting point fordrafting a Purpose and Need Statement for the current study. The project Management Team made minor revisions to the 2002 statement and presented it to the Addison County TAC. The Addison County TAC offered additional revisions.

Purpose: Enhance the economic vitality and quality of life in downtown Vergennes by reducing the noise, vibration, fume and dust impacts of truck traffic while:

- Mainta ining a high level of service for the movement of freight in the region;
- Minimizing and/or mitigating traffic impacts to other transportation comidors;
- Minimizing property and environmental resource impacts in neighboring communities;
- Supporting the continued movement of non-truck traffic through Downtown Vergennes; and,
- Providing a cost-effective use of resources.

Need: Vergennes is Vemont's oldest city and its 200+ year heritage is visible in the striking architecture of the historic buildingsthat line Main Street. Main Street is a regional shopping and dining destination featuring a city green surround ed by an ec lectic mix of businesses a nd sidewalk cafes. The vibrancy of the downtown and further business development however, are hampered by the rumbling of large trucks up and down the steep grade that leads from downtown to the Otter Creek. The magnitude and impact thistruck traffic are described below.

- Up to 800 daily trucks have been recorded on Main Street in downtown Vergennes.
- Most of the truck traffic, up to 535 trucks per day, are large tractor trailer units.
- The 2017 Vermont State Commodity Flow study prepared by the Two Rivers Ottauquec hee Planning Commission indicates that three to six trucks perhour pass through downtown Vergennes carying hazardous materials.

VT22A TRUCK ROUIE STUDY

- The most recent Vermont Freight Plan ${ }^{6}$ predic ts growth in truck traffic on VT22A of 40 to 60 percent between 2007 and 2035.
- Existing truck volumes in Vergennes are much higher than those experienced in other historic Vermont cities. For comparison: US 7 in Brandon camies 190 large trucks per day; US 4 in Woodstock ca mies 140 large trucks per day; and, VT116 in Bristol camies 50 large trucks perday.
- Trucks must negotiate a very steep, 11 percent, grade heading north through downtown from the Otter Creek bridge.
- Historic buildings are located with 35 feet of the roadway edge. The City recently spent $\$ 2$ million renovating the historic Vergennes Opera House and looks to protect this investment from the vibration impactscaused by truck traffic.
- Outdoor dining at several resta ura nts is within 22 feet of truc ks traveling on Ma in Street.
- The state of Vermont has finite financial resources available to address a myriad of transportation system concems a cross the state. Investments made in this comidor must be cost-effective with respect to competing projectselsewhere in the state.

The above Purpose and Need Statement guided the development and evaluation of altemative strategies to address truck traffic impacts in Vergennes.

7.0 ALTERNATIVES ANALYSIS

Three principal altemative strategies were considered to address the project Purpose and Need Statement. These include:

- Altemative A - VT22A Truck Route (In-Line Altemative): VT22A would continue to function as the principal north/south truck route in westem Vermont however, modific ations would be made to VT22A in Vergennes to allow for safer pedestrian and bic ycle movements and smoother truck operations with fewer vehic le starts and stops. In addition, efforts would be made at the state level to shift more freight shipments from truck to rail.
- Altemative B - New Alignment Truck Route: A new road would be constructed on an a lignment that bypasses downtown Vergennes to the northwest and through trucks would be restricted from using VT22A through downtown Vergennes.

[^2]
VT22A TRUCK ROUIE STUDY

- Altemative C - VT17 Truck Route. VT17 would be reconstructed to more safely accommodate truck traffic. Through trucks would be restricted from passing through downtown Vergennes on VT22A and directed to VT17 between VT22A and US 7.

Separate report sections a re provided below describing and evaluating each altemative. For each altemative there is a detailed description of the proposal and a qualitative discussion of its impacts. Project implementation costs related to design, permitting, right-of-way a nd construction are also presented. The lump sum implementation costs are then converted to an a nnualized cost assuming the project were funded with state-issued bonds. The a nnualized cost is then compared the value of benefits (and costs) that would accrue from the project on an annual basis.

The annual benefits and costs associated with each altemative are considered Project Impacts. These are described in three general categories:

- Quality of Life/Economic;
- Safety; and
- Truck Operations.

As noted in the Purpose and Need Statement, truck operations along Ma in Street and other roadway segments impact the quality of life for those living, working, shopping or doing business along those roadway segments. It is assumed that mitigating and/or eliminating the impacts of truck traffic will enhance quality of life. In tum, an improved quality of life would translate into higher property values a nd higher property values would lead to increased property tax revenues. In the downtown area an enhanced quality of life would also translate into increased retail sales and increased resta urant revenues. These benefits were annualized by quantifying the inc reased tax revenues that would be generated by higher property values, higher retail sales and higher dining revenues, Likewise, for roadway segments that would experience increased truck volumes under Altemative B, anticipated negative impacts on quality of life were determined.

Safety impacts were determined by considering the impact of each altemative on vehic ular crash experience. Changing the design of a roadway segment orchanging the volume levels will have a predictable impact on the number of crashes. A cash value wasassigned to each crash again allowing for annualization of the safety impact of each altemative.

Fina lly, truck operating costs were considered. Altematives B and C would both change the route used by through trucks in westem Vermont. The longer trip lengths and travel times will impact the cost of each trip. Per mile operating costs for trucks and typic al labor rates for truck drivers were applied to calculate annual changes in operating costs for impacted freight movements.

VT22A TRUCK ROUIE STUDY

The combined annualized implementation costs were compared to the combined annual impacts/benefits of each altemative to establish a benefit-cost ratio. The benefit-cost ratio allows for objective comparisons a mong the three altematives.

The final factors disc ussed for each altemative relate to nisk and timing. Based on the anticipated design, permitting and construction issues associated with each altemative, an opinion is given relative to the likelihood of project implementation (if pursued) and the expected timetable to implement each altemative.

7.1 ALTERNATIVE A - VT22A TRUCK ROUIE (IN-UNE ALTERNATIVE)

Altemative A, the "In-Line Altemative", includes two components. The first includes physic al changes to Main Street (VT22A) in Vergennes. The suggested Ma in Street improvements would more safely accommodate pedestrian and bicyclist movements and smooth traffic flow. These actions are expected to enhance the quality of life along Main Street without signific antly changing the volume of trucks on this route. The second component consists of supporting strategiesthat are expected to reduce truck volumes on VT22A. These strategies are more regional efforts being pursued by the state to divert some freight movements in westem Vemont from trucks to rail.

7.1.1 Main Street Improvements

The suggested Main Street improvement program has been developed in cooperation with City staff. The improvements are intended to enhance the safety, functionality and multimodal camying capacity of the VT22A comidorthrough Vergennes in addition to mitigating the quality of life impacts of trucks in downtown Vergennes. The general concept limits any roadway widening to areasoutside the urban core where strategies are proposed to create a more pedestrian and bike friendly environment. The program is summarized in Figure 7-1 and described below by roadway segment proceeding south to north along Ma in Street.

- Panton Municipal Boundary to Panton Road-Widen VT22A from approxima tely 28 feet to 32 feet to comply with state standards fortwo-lane rural highways carrying significant truck volumes. (VTrans is undertaking a similar project for southem sections of VT22A just north of Fa ir Haven.) Address existing drainage issues along the southem portion of this segment. Provide a crosswalk with wa ming signson VT22A at Hopkins Road. Stripe the roadway shoulders as bike lanes between Panton Road and Hopkins Road. The widening would a llow for safer traffic operations and provide accommodations bic yclists a nd pedestrians.
- Panton Road/Em Street/VT22A Intersection-Assuming that a decision is made to move forward with Altemative B, signa lize this intersection as proposed in a prior study and coordinate this signal with existing signals on Ma in Street at Green Street and Monkton Road. The signal would reduce peak hour congestion experienced on the Panton Road approach to this intersection and more safely accommodate pedestrian traffic crossing VT22A. Once the bypass (Altemative B) is completed and traffic volumes are diverted from VT22A to the bypass, removal of the signal could be evaluated. Should a decision be made not to pursue Altemative B, then construction of a modem round about at this location is recommended ratherthan a signal. The roundabout would also address existing congestion issues and function as a gateway to slow traffic entering the downtown area.

Figure 7-1 Altemative A Plan

- Panton Road to North Side of Bridge over Otter Creek-Install "sha rrow" pa vement markings to remind motorists to share the la ne with bic yc lists.
- OtterCreek to Mac Donough Drive-Restripe roadway to provide a northbound (uphill) bike lane. Provide an edge line and sharrow markings for the southbound lane. Reconstruct the Main Street/Mac Donough Drive/ South Water Street intersection to provide better definition and accommodate safer pedestrian crossings as shown in Figure 7-2. Install traffic signal conduit to support a possible future signal installation.
- MacDonough Drive to Monkton Road-This section of Ma in Street defines the urban core. Along this section the installation of traffic calming measures to more safely and comfortably accommodate pedestrian and bicycle traffic in the presence of the existing truck traffic is proposed. The proposed changes are shown in Figures 7-2a through 7-2d and include:
o The introduction of curb extensions on Main Street and flush, center median isla nds at major intersections;
o The use of textured pavement to provide heightened awareness of c rosswalks at signa lized intersections;
o Providing raised crosswalks, enhanced signage, and rectangular rapid flashing beacons at unsigna lized pedestrian crossings;
o Adding "walk/don't walk" signal heads at the existing Green Street and Monkton Road signals;
o Upgrading controllers and coordinating signals at Green Street and Monkton Road;
o Installing sharrow pavement markings to accommodate bicyclists; and,
o Designating a bike route along School Street for northbound travel allowing bic yc lists to bypass the diagonal parking stalls and uphill grade along Ma in Street.
- Monkton Road to Vergennes Police Station-Widen VT22A to a pproximately 32 feet to comply with state standards fortwo-lane rural highways camying signific ant truck volumes. Address existing drainage issues along the middle portion of this segment (at the "gully"). Stripe the paved shoulders as bike lanes in each direction. The widening would allow forsafer traffic operations and provide accommodations for bicyclists.
- Vergennes Police Station to Femisburgh Park and Ride Lot-Install a new sidewalk connecting to the existing sidewalk on the east site of VT22A. Stripe the existing paved shoulders as bike lanes.

Figure 7-2a Main Street Traffic Calming Plan (Mac Donough to Maple)

Figure 7-2b Main Street Traffic Calming Plan (Green to East)

Figure 7-2c Main Street Traffic Calming Plan (School and North Streets)

Figure 7-2d Main Street Traffic Calming Plan (Monkton Road)

VT22A TRUCK ROUIE STUDY

Elements of the Main Street program may be constructed by VTrans in 2020 as part of a scheduled ClassI Highway paving project. The paving project would extend along Main Street from Femisburgh to Pa nton. Actions that would bring the roadway into better complia nce with existing VTrans design sta ndards, such as upgrades to existing crosswalks and the inclusion of pedestrian signals at signalized intersections, are likely to be included in the paving project. Actions that would require right-of-way modifications, such as installing a modem roundabout at the Panton Road intersection, are not likely to be considered as part of the paving project.

7.1.2 Supporting Strategies

The second component of Altemative A could potentially reduce truck traffic volumes on Ma in Street through downtown Vergennes. Disc ussions with VTrans and Vemmont Rail have identified opportunities to make rail more competitive with trucks for the movement of certa in goods in westem Vermont. Specifically, Vemont Rail cites a lack of loading and unloading facilities for petroleum products in Chittenden County and in the Port of Albany, New York. The absence of suita ble facilities limits the volume of petroleum products that move by rail. Some freight shipments a re also restricted by weight limits on the state-owned rail line senving westem Vemmont. Ma inline railroads in the United States generally haul rail cars weighing up to 286,000 pounds. Rail cars on Vemmont railroads are limited to a weight of only 263,000 pounds. Consequently, the heavier cars loaded elsewhere ca nnot travel through Vemont or shippers sending cars to Vemmont must underload them adding to shipping costs.

VTrans is in the process of completing structural improvements to the rail corridor in westem Vermont that will soon support the travel of 286,000-pound railc ars between Albany and Chittenden County. A federal grant was recently a warded to help fund this effort. VTrans has studied the potential impacts of the rail system upgrades and has detemined that these improvements could support a shift of 13 percent of the freight moving by truck to rail.

7.1.3 ProjectCosts

The estimated implementation cost for the Altemative A improvements other than the proposed roa dway widenings is $\$ 700,000$. This estimate includes c onstruc tion, planning, design a nd construction inspection services. The proposed widening of approximately one mile of roadway would add $\$ 1.2$ million to the implementation cost. The unit costs used in preparing the estimates are based on two-year average pricing on other VTransprojects and on recent bid tabulations from projects with similar features. Construction cost calculations a re provided in the appendix.

7.1.3.1 Right-of-Way Constraints

Altemative A is limited to improvements that a re generally located within the existing Main Street right-of-way in downtown Vergennes. Significant right-of-way costs not expected. The only possible right-of-way issuesto be addressed are in the southwest comer of the McDonough Drive/South Water Street/Ma in Street intersection where pedestria n improvements and new curbing are proposed. Right-of-way risks a nd delays are very limited for this altemative.

7.1.3.2 Environmental Constraints and Permits

Land abutting the proposed Altemative A improvements is generally developed land and consequently is not expected to be signific antly impacted by the proposed actions from an environmental perspective. The proposed improvements include new landscaped areas in downtown Vergennes and drainage improvements elsewhere that may, in fact, help reduce urban stormwater runoff resulting in positive environmental impacts. The proposed roadwork would not signific antly impact abutting historic build ings.

7.1.3.3 Amortization

The implementation cost of the Main Street improvements was also calculated on an annual basis. The a mortization calculation assumes that the project would be funded with state-issued, tax-free bonds amortized over a 30-year period. It is not anticipated that VTrans would issue bonds to fund the improvements however, this analysis provides a mea sure of the cost of the improvements on an annual basis. Bonds issued by the State of Vermont in 2017 ca mied an effective interest rate of 2.48 percent. Applying an interest rate of 2.5 percent and 30 -year amortization period for a $\$ 1.9$ million project indic ates an annual cost of $\$ 110,000$. If the roadway widening proposals are omitted, the a nnual cost is only $\$ 40,000$.

7.1.4 Project Impacts

Potential benefits associated with project implementation are quantified below for the three major categories referenced above. In general, the proposed traffic calming improvements would have little or no impact on the volume of truck traffic passing through downtown. The ongoing and potential rail system upgrades may remove a modest a mount of truck traffic from Main Street over time. Consequently, this altemative does not substantially mitigate the impacts of truck traffic on downtown Vergennes by removing trucks from this roadway segment. However, the traffic calming improvements would mitigate truck impacts to some extent by creating a more comfortable environment for pedestrians and bicyclists to share the Main Street right-of-way with truck traffic. The improved comfort level and improved quality of life would consequently have a positive impact on the vita lity and vibrancy of the downtown. The proposed new traffic signal and signal coordination could reduce the number of starts and stops by trucks in downtown Vergennes. Fewer truck stops and starts would offer some reduction in the noise, vibration, and fume impacts associated with truck traffic. Truck operators may also realize nominal reductions in fuel consumption and operating costs with the smoother flow. The following sections disc uss how these impacts were quantified in monetary terms for compa rison to the a mortized project implementation costs.

7.1.4.1 Quality of Life/Ec onomic

Economic benefits associated with Altemative A relate to the potential enhanced quality of life it would bring to downtown Vergennes. It is assumed that an enhanced quality of life would translate into inc reased retail sales, inc reased resta urant revenues, and higher property values. Representatives of the Vergennes Partnership were consulted in developing assumptions relative

VT22A TRUCK ROUIE STUDY

to the potential impact Altemative A would have on these factors. (Vergennes Partnership businesses were surveyed by leadership during the conduct of this study to assess opinions rega rding truck traffic in Vergennes.) Based on these discussions, it is assumed that Altemative A would have a positive impact on quality of life increasing commercial activity and property values by two to five percent. It was also assumed that the added commercial activity would have a multiplier effect creating even more tax revenues, 20 percent more, as businesses on Main Street purchase goodsand services from other area businesses. Assuming such an impact, downtown properties and businesses would generate new tax revenues of $\$ 38,000$ to $\$ 95,000$ peryear. This a nalysis is included in the report a ppendix and a summary is provided in Table 7-1.

Table 7-1 Potential Ec onomic Benefits Assoc iated with Altemative A

| | Assumed Change Due to
 Project (\%) | | | Change Due to Project (\$) | |
| :--- | :---: | :---: | :---: | ---: | ---: | ---: |
| | Existing | Iow Estimate | High Estimate | Iow Estimate | High Estimate |
| Downtown Commercial Activity
 Annual
 Retail/Dining
 Revenues $\$ 18,000,000$ 2% 5% $\$ 365,000$ $\$ 915,000$
 Annual
 Retail/Dining
 Tax Revenue $\$ 1,270,000$ 2% 5% $\$ 30,000$ $\$ 76,000$
 Downtown Real Estate
 Commercial
 Property Values $\$ 16,750,000$ 2% 5% $\$ 335,000$ $\$ 840,000$
 Real Estate Tax
 Revenue $\$ 380,000$ 2% 5% $\$ 8000$ $\$ 19,000$ | | | | | |

7.1.4.2 Safety

Antic ipated safety impacts of Altemative A were determined using the crash data for the study area presented above in the existing conditions section of the report. The data were used to estimate the total annual cost of crashes in the study a rea under existing conditions. As shown in Table 7-2 the current cost of crashes for the entire study a rea is a pproximately $\$ 1.23$ million per year.

Table 7-2 Existing Cost of Crashes by Roadway Segment

Segment	Iength	$\mathbf{2 0 1 7}$				
AADT	Crashes (2013- $2017)$	Crash Rate	Cost per Crash	Annual Cost of Crashes		
Main Street Downtown Vergennes	0.5	9800	57	6.37	$\$ 30,000$	$\$ 342,000$
VT17	7.4	1700	29	1.26	$\$ 30,000$	$\$ 174,000$
VT22A South of Downtown	5.9	5600	51	0.85	$\$ 30,000$	$\$ 306,000$
VT22A North of Downtown	1.0	2500	6	1.32	$\$ 30,000$	$\$ 36,000$
US7	5.4	7550	62	0.83	$\$ 30,000$	$\$ 372,000$
TOTAL			$\mathbf{2 0 5}$			$\mathbf{\$ 1 , 2 3 0 , 0 0 0}$

Proposed roadway improvements under Altemative A would impact crash rates in three ways. First, traffic calming measures proposed in the downtown area would reduce crash rates on this roadway segment. Second, proposed widenings of Main Street just north and south of downtown would reduce crash rates on these segments. Third, a new traffic signal at the Panton Road intersection would reduce the number of collisions at this loc ation.

The safety a nalysis for the downtown roadway segment considers the potential impact of the proposed traffic calming measures. The Speed Management Toolkit published by the Federal Highway Administration (http://safety.fhwa.dot.gov/) compiles data from va rious research studies and indicates that traffic calming programs can reduce crash rates by six to 18 percent. For this a nalysis it is assumed that the proposed roadway improvements will reduce the crash rate along Main Street by ten percent. Assuming this rate change the annual cost of crashes along the downtown section of Main Street would be reduced by $\$ 34,000$ (ten percent of $\$ 342,000$). This represents ap proximately one less crash per year relative to existing conditions.

The proposed roadway widenings for approximately one mile of roadway immediately north and south of downtown Vergennes would reduce crash rates on these segments as well. As shown in Table 7-2, the 5.9-mile segment of VT22A south of downtown Vergennes already has the lowest crash rate of any roadway segment in the study area, 0.85 crashesper million vehicle miles (MVM). Much of this segment, in Panton and Addison, already meets VTrans minimum width standards. Consequently, it is a ssumed that the proposed widenings in the downtown a rea would result in a low crash rate on these segments as well. It is also assumed that the existing crash rate on the na rrower sections of VT22A just north and just south of downtown Vergennes matc hes the existing crash reported on VT22A north of downtown Vergennes, 1.32 crashes per MVM. With the proposed widenings, it is assumed that the crash rate on the onemile segment of VT22A just north of downtown Vergennes would be reduced from 1.32 crashes per MVM to 0.85 crashes per MVM. This would indic ate a 36 percent reduction in the number and cost of crashes. The annual cost of crashes on this one-mile segment is $\$ 36,000$. A 36 percent reduction indicates $\$ 13,000$ in a nnual sa ving.

VT22A TRUCK ROUIE STUDY

Finally, crashes at the Panton Road/Elm Street/Main Street intersection were considered. Typic ally, installation of a traffic signal will lower the crash rate at a previously stop-controlled intersection. The Highway Safety Manual provides data suggesting that installing a signal will reduce crashes by 44 percent. Crash data compiled forthe segment analysis presented above identifiestwo crashes occuming at this intersection over a five-year period. At an assumed cost of $\$ 30,000$ per crash, the signal installation would reduce the five-year cost of crashes from $\$ 60,000$ to $\$ 33,6000$. The signal installation would consequently reduce the annual cost of crashes by a p proximately $\$ 5000$ per year.

The combined impact of the three roadway changes considered indic ates and annual crash sa vings of $\$ 52,000$ per year.

7.1.4.3 Truck Operations

As noted above, the proposed signal coordination under Altemative A would allow for smoother traffic flow an fewer vehicle stops in downtown Vergennes. However, these benefits would accrue over a relatively short roadway segment. Consequently, it is assumed that this altemative will have no significant impact on truck operations.

7.1.5 Benefit Cost Analysis

The project benefits and costspresented above have been combined and compared. The results of this a nalysis for the Altemative A are shown in Table 7-3. As shown, the annualized cost of the Altemative A, In-Line Improvements, is $\$ 110,000$. The a ccumulated benefits with respect to tax revenues and vehicle crash reduction range from $\$ 90,000$ to $\$ 147,000$ per year. As such, the average estimate of the anticipated project benefits exceeds the project cost.

Table 7-3 Benefit-Cost Calculation for Altemative A

Project Cost		Benefits	Low	High	Average
Implementation	$\$ 1,900,000$	Downtown Sales/Dining Tax Revenues	$\$ 30,000$	$\$ 76,000$	$\$ 53,000$
Amortized	$\$ 110,000$	Property Tax Revenues (Downtown)	$\$ 8,000$	$\$ 19,000$	$\$ 13,500$
	Subtotal	$\$ 38,000$	$\$ 95,000$	$\$ 66,500$	
		Safety (Crash Reduction)	$\$ 52,000$	$\$ 52,000$	$\$ 52,000$
		TOTAL	$\$ 90,000$	$\$ 147,000$	$\$ 118,500$
		Benefit/Cost Ratio	0.82	1.34	1.07

VT22A TRUCK ROUIE STUDY

7.1.6 Project Implementation

VTrans is currently designing a resurfacing project for VT22A in Vergennes. Elements of the Altemative A improvements could be included in the paving project which is scheduled for construction in 2020. City staff are now working with VTrans to define elements that can be incorporated into the paving plansand funded by the state.

Funding sourcesthat should be considered forelements of the In-Line altemative that are not completed aspart of the paving project include: Town Highway Grants; Transportation Altematives Grants; and, Vermont Bicycle and Pedestrian Program Grants. The grant applic ation processes are competitive and applic ations are judged on several criteria. Projects that meet the intent of the grant, display support from the community, and provide realistic cost estimates and schedules are more successful in rec eiving grant funding. Timing is dependent upon the readiness of the project for construction, the project cost, and state grant funding levels for the year in which funding is sought. The proposed signal installation at Panton Road is one of the more costly items. This new signal installation may be eligible for state and federal funds. The signal project could be added to the ACRPC Long Range Plan to get it in the queue for these funds. The signal work could then be considered forthe VTrans Capital Program.

7.1.6.1 Risks and Timing

Prior to allocating project funding, VTrans must first consider the probability of project completion. Transportation projects are more susceptible to delays orcancelation when there are signific ant right-of-way and environmental constraints. Altemative A is relatively low-risk as the improvements are mostly contained within the existing highway right-of-way. The improvements are low-impact as they mostly reallocate existing roadway space and do not substantially change the footprint. Proposed roadway changes will not require any known environmental permits.

Project design, right-of-way, and permitting requirements help define project implementation schedules. As noted above, a portion of the In-Line improvements may be constructed by 2020 as part of the state paving project. Remaining elements are relatively low-impact actions suitable for implementation within a three to five-year timeframe. Possible rail system improvements under consideration will likely take longer to implement. VTrans has just received a grant to fund the upgrade of the rail line in this comidor allowing it to camy standard-size freight cars.

7.2 ALTERNATIVE B - ALTERNATIVE ALGNMENT(TRUCK BYPASS)

Altemative B, the "Altemative Alignment" strategy, includesconstruction of a new roadway to the north and west of Main Street designed to camy through truck traffic a round downtown Vergennes. The roadway design would include: two travel lanes; a minimum 32-feet wide cross section; a 45-mph design speed; and, a maximum grade of six percent to comply with VTrans' standardsfor roadways carying signific ant truck traffic. The 32 -feet wide paved section would include 12 -feet wide travel lanes and four-feet wide shoulders. Also, the roadway would be

VT22A TRUCK ROUIE STUDY

constructed totally within the Vergennes municipal boundaries. A possible alignment for such a roadway is shown in Figure 7-3. This alignment seeks to a void splitting up parcels in agricultural use. Splitting up larger parcels may create small, isolated parcels that are not cost-effective to farm. The suggested new roadway would be approximately 2.5 miles long intersecting VT22A just north of the Vergennes/Panton munic ipal line and again just south of the Ferisburgh/Vergennes munic ipal line. A new bridge with a span of a pproximately 900 feet would be constructed over OtterCreek with an above waterclearance of at least 39 feet to allow the safe passage of sailboats between Lake Champlain and marinas in the OtterCreek basin. Any new bridge must meet clearance requirements suffic ient to comply with Section 10 of the Rivers and Harbors Act requirements. The new roadway would have STOP-controlled intersections with Panton Road, McDonough Drive and Comfort Hill Street.

Figure 7-3 Altemative B Alignment Plan

VT22A TRUCK ROUIE STUDY

Conceptual plans for the new roadway are shown in Figures 7-4 a-f. The conceptual plans show the new roadway intersecting VT22A at new roundabout intersections. The roundaboutswould function as "gateways" to Vergennes as well as accommodating vehic le tuming movements. As discussed above, traffic operations at the bypass road intersections with VT22A were analyzed initially under the assumption that the intersections would be T-type intersections with STOP control on the bypass road approaches. The a nalyses determined that the assumed STOP sign control would not perform adequately at the northem bypassterminus assuming full development of parcels along the new roadway alignment and that a roundabout ortraffic signal would be needed at this location under "full build out" conditions.

The suggested plan representsa possible concept for analysis purposesand is not presented as the recommended plan. Additional planning, public input and environmental permitting would be required to further consider the design concept shown and to develop a recommended plan.

Construction of the new alignment roadway could lead to new development along its length. The new roadway would pass through or nearsome parcels that are undeveloped, underdeveloped or in agricultural use. Enhanced vehicularaccess to these parcelswould make them more attractive for new commercial or residential development. Assuming that the new roadway would influence the development potential of properties located within approximately 800 feet of its a lignment, ap proximately 930 acres of land in Vergennes, Pa nton a nd Femisburgh would be affected lessland protected by conservation easements.

A wide range of future land use scenarios for the affected parcels is conceivable however, any potential development plans would be controlled by the impacted munic ipalities. Curent Vergenneszoning would support some residential development along northem sections of the new alignment roadway and some commercial development in the vic inity of Panton Road (see Figure 4-26 above). Zoning changes would be needed to allow commercial development on agric ultural lands in Vergennes, Ferisburgh and Panton. For a nalysis purposes it was assumed that properties in Panton (50 a cres) a nd Fenisburgh (400 acres) would be developed for commercial uses as noted in Figure 7-5. A mix of commercial and residential uses was a ssumed for properties in Vergennes. Meetings were held with members of the Vergennes Planning Commission, Mayor Renny Pemy and representatives of the Vergennes Partnership to create a future land use scenario for the Vergennes properties that includes 360 acres of commercial development, 55 acres of single-fa mily residential homes and 65 acres of multi-family housing units. The assumed $65-$ acre multi-fa mily residential parcel is the existing J ob Corps site. The assumed land use plan includes new commercial development proximate to the bypass road and new residential development proximate to existing residential uses in Vergennes. Residential properties would be built suffic iently distant from the suggested bypass road such that truck traffic on the roadway would not have significant quality of life impacts at the new residential properties.

VT22A TRUCK ROUTE STUDY

Figure 7-4a Altemative B Concept Plan - Section a

VT22A TRUCK ROUIE STUDY

Figure 7-4b Altemative B Concept Plan - Section b

VT22A TRUCK ROUTE STUDY

Figure 7-4c Altemative B Concept Plan - Section c

VT22A TRUCK ROUTE STUDY

Figure 7-4d Altemative B Concept Plan - Section d

VT22A TRUCK ROUIE STUDY

Figure 7-4e Altemative B Concept Plan - Section e

VT22A TRUCK ROUTE STUDY

Figure 7-4f Altemative B Concept Plan - Section f

Figure 7-5 Future Land Use Assumptions for Altemative B

7.2.1 Project Costs

Construction costs for the Áltemative Alignment plan were prepared using the software tool used to develop the plan. The model provides quantities for major construction items such as roadway excavation, roadway fill, and asphalt. Unit costs are then applied to provide a base estimate. Stantec then compared the model output to unit coststypic al of VTrans projects. The estimates for the bridge construction were also closely sc rutinized and adjusted to reflect site specific conditions. Finally, the cost estimates were compared to the reported construction costs for the VT100 bypass recently constructed in Momistown. From this a nalysis the estimated project construction cost is $\$ 27.5$ million.

7.2.1.1 Right-of-Way Constraints

The footprint of the New Alignment Altemative right-of-way is a pproximately 15 acres. The area disturbed for roadway construction, which would include areas regraded undertemporary easements, is approximately 25 acres. Most of the impacted parcels are privately owned and

VT22A TRUCK ROUIE STUDY

would be subject to the Uniform Relocation Act. The one exception is the Northland Job Corps property which is already state-owned land. Private properties affected along the altemative roadway alignment mostly comprise undeveloped or agric ultural acreage. The plan would also impact six existing residential properties. Right-of-way costs of $\$ 7000$ per acre have been a ssumed for the non-residential properties. The assumed right-of-way costs for the residential properties are $\$ 300,000$ each (in current dollars). Based on these assumptions the total antic ipated night-of-way cost for this altemative is $\$ 2.15$ million.

7.2.1.2 Environmental Constraints and Permits

Altemative B will have unavoidable environmental impacts that must be mitigated. Construction of a new roadway and bridge overthe OtterCreek, its adjacent wetlands, a nd floodplains will have direct environmental resource impacts. The project design must seek to minimize these impacts and provide mitigation for una voidable impacts. Mitigation may include the construction of new, replacement wetlands and floodplains, and/or financial contributions to enhance existing wetland resources. Mitigation strategies must be reviewed and approved at several levels of govemment. This would include reviews by: the Vermont Agency of Natural Resourcesthrough the Vermont Wetland pemit process and the Vermont Flood Hazard and River Coridor Permit processes; the Army Corps of Engineers through the Section 10 and Section 404 Permit processes; and, the District Environmental Commission through Act 250.

The Otter Creek crossing and other known, mapped wetland crossings total approximately two ac res of direct impact. Assuming mitigation costs of $\$ 130,000$ per acre (typical of costs assoc iated with similar and recent transportation projects), the wetland mitigation costs for two acres of direct wetla nd impact assoc iated with Altemative B total approximately $\$ 260,000$. This figure does not account for any wetland buffer-related impacts or permit application fees.

Another major area of environmental impact relates to takings of land classified by the state as Prime Agric ultural Soils and Soils with Statewide Signific ance. Again, the project design should seek to minimize these impacts and avoid fragmenting farmland via coordination with the USDA Soil Conservation Service and the Vemont Agency of Agric ulture, Food and Markets. Una voidable impacts would need to be mitigated. This is typic ally accomplished by purchasing and protecting a gric ultural la nds elsewhere. Based on the Act 250 Criterion 9(B) 2018 Off-Site Mitigation Fees, Prime Agric ultural Soil mitigation would cost $\$ 1,584$ per acre in the project area. Altemative B would impact an estimated 20 acres of Prime Agric ultura I Soils and Soils with Statewide Signific ance. Assessing these soil impacts as Prime Agric ultural Soils, the total "soils" mitigation cost for Altemative B would be approximately $\$ 130,000$.

Other potential areas of environmental impact relate to rare and endangered species habitat and conta minated soils. Based on the available mapping provided in the existing conditions section of this study, direct impacts to rare bat habitat may result from tree clearing. Additional impacts may be identified during the project design development process. Acc ordingly, another $\$ 200,000$ is added to the budget for Altemative B to address unknown issues that may a rise in these areas. Combined, environmental mitigation costs for this project are estimated at \$600,000.

VT22A TRUCK ROUIE STUDY

7.2.1.3 Amortization

The total implementation costs for Altemative B were determined and a ga in a mortized to estimate an annual cost for the project. Planning, design, permitting and construction services fees were estimated as a percentage of the estimated construction cost. Combined with the right-of-way and environmental mitigation costs the total estimated project cost is approximately $\$ 39$ million as shown in Table 7-4. The a mortization calculation assumes that the project would be funded with state-issued, tax-free bonds a mortized over a 30-year period. Applying an interest rate of 2.5 percent and 30-year amortization period for this project indic ates an annual cost of $\$ 2,275,000$. Added to the a mortization cost are a nnual costs for snow removal, draina ge system maintenance and other routine maintenance costs. Also, depreciation costs are included assuming a life expectancy of 50 years for the bridge and 100 years for the roadway. Maintenance and depreciation costs are estimated at $\$ 420,000$ per year. The total annualized project cost is $\$ 2.695$ million. Cost calculations are included in the appendix.

Table 7-4 Implementation Cost Summary for Altemative B

Item	Cost
Construction	$\$ 27.5$ million
Right-of-Way	$\$ 2.15$ million
Environmental Mitigation	$\$ 0.6$ million
Planning (5\% of construction)	$\$ 1.4$ million
Engineering and Permitting (15\% of construction)	$\$ 4.1$ million
Construction Engineering (11\% of construction)	$\$ 3.0$ million
TOTAL	$\$ 38.75$ million
Annua lized Project Cost	$\$ 2.275$ million
Life Cycle/Ma intenance Cost (Annual)	$\$ 420,000$
Total Annua lized Cost	$\$ 2.695$ million

7.2.2 Project Impacts

Potential positive and negative impacts associated with project implementation are quantified below. In general, construction of a bypass road is expected to have signific ant positive impacts with respect to quality of life and the local economy. More modest positive impacts are anticipated with respect to traffic safety.

7.2.2.1 Economic

Economic benefits associated with Altemative B relate to the potential enhanced quality of life it would bring to downtown Vergennes and the new development opportunities it would provide along the proposed new roadway alignment.

The bypass altemative would remove all through trucks, 90 percent of the total truck traffic and 95 percent of the large truck traffic, from downtown Vergennes. The removal of the truck traffic would virtually eliminate truck related noise, emissions, dust and vibration impacts. Sa fety risks associated with a potential spill of hazardous materials from trucks and trucks stalling on the steep roadway grade in the downtown area would also be eliminated. These quality of life improvements would translate into increased retail sales, increased restaurant revenues, and higher property values in downtown Vergennes. Analyses were conducted to quantify the expected tax revenue impact of these changes in order to annua lize these benefits.

Baseline conditions for retail sales, resta urant sales and real estate assessments were defined above. Representatives of the Vergennes Partnership were again consulted in developing assumptions relative to the potential impact Altemative B would have on these factors. Based on these disc ussions, it is a ssumed that Altemative B would have a signific ant impact on quality of life increasing commercial activity and property values by ten to fifteen percent. Again, twenty percent was added to retail and dining tax revenuesto account for inc reased purchases made by downtown businesses. Assuming such an impact, downtown properties and businesses would generate new tax revenues of $\$ 190,000$ to $\$ 285,000$ per year. This a nalysis is included in the report appendixand a summary is provided in Table 7-5.

Table 7-5 Potential Ec onomic Benefits Assoc iated with Altemative B Downtown Vergennes

Construction of the Altemative Alignment roadway could also have positive economic impacts from a land development perspective. The new roadway would enhance access to presently undeveloped and underdeveloped properties along its length. New land development would increase assessed land values and tax assessments. For example, much of the land along the proposed roadway alignment is in agric ultural use and Grand Lists for Vergennes, Femisburgh

VT22A TRUCK ROUTE STUDY

and Panton indicate that these lands are assessed at $\$ 2000$ to $\$ 28,000$ per acre. The average rate is $\$ 8000$ per acre. Development of an acre of land with three single-fa mily homes valued at $\$ 275,000$ each would increase the land value to $\$ 825,000$ per acre. This ap proximate ten-fold increase in land value would likewise lead to an approximate a ten-fold increase in property tax revenues. Conversion of undeveloped land or farmland to commercial use would also have significant economic impacts. The 26 -acre CollinsAerospace site on Panton Road for example is assessed at $\$ 5.2$ million or a pproximately $\$ 200,000$ per acre.

An assumed future land use scenario was described above and illustrated in Figure 7-5. The assumed land use changes were considered to estimate potential new tax revenuesthat could be generated by new development. The a nalysis considered Grand List data for impacted parcels related to: parcel area; existing assessed values; and, associated property taxes. For future conditions, topographic and wetland mapping were examined to estimate buildable acreage foreach parcel. Deductions to determine buildable area also consider land lost to construct the bypass roadway and connecting access and subdivision roadways. The detailed parcel-by parcel a nalysis is included in the report appendix. It notesexisting zoning for the affected parcels and assumed future land use conditions. Summary findings are presented in Table 7-6. As shown, assuming redevelopment of all affected parcels, assessed land values along the roadway would increase by approximately $\$ 107$ million. Estimated new tax revenues generated by this new development are approximately $\$ 2.6$ million per year. Considering just the Vergennes properties in this a nalysis indicates an increase in assessed land value of a pproximately $\$ 64$ million. The assoc iated net new property tax revenues are $\$ 1.8$ million annually. The calculated property tax inc reases represent only a portion of the full economic impact associated with new development. Spending by new commercial ventures and new households will create additional, positive economic impacts.

VT22A TRUCK ROUTE STUDY

Table 7-6 Potential Tax Consequences Associated with New Development Along the Bypass Roadway

	Existing Condtions				Future Scenario				
Municipality	Land Use	Sre (Acres)	Assessed Value	Annual Taxes	Land Use	Sre (Acres)	Assessed Value	Annual Taxes	Net Increase
Vergennes	Agric ultural /Undeveloped	362.68	\$3,838,213	\$87,469	Commercial	156.242	\$23,436,300	\$550,814	\$463,345
	Agric ultural /Undeveloped	56.95	\$357,700	\$8,152	Single-Fa mily Residential	31.18	\$25,725,563	\$616,333	\$608,181
	J ob Coms (State Land)	66.00	\$16,244,321	\$91,000	Multi-Fa mily Residential	39.60	\$34,650,000	\$830,145	\$739,145
					Unbuildable	258.61			
	Subtotal	485.63	\$20,440,234	\$186,621	Subtotal	485.63	\$ 83,811,863	\$1,997,292	\$1,810,671
Femisburgh	Agricultural /Undeveloped	401.00	\$1,328,220	\$25,182	Commercial	270.80	\$40,620,000	\$770,115	\$744,933
					Unbuildable	130.20			
	Subtotal	401.00	\$1,328,220	\$25,182	Subtotal	401.00	\$40,620,000	\$770,115	\$744,933
Panton	Agric ultural /Undeveloped	52.30	\$1,370,100	\$26,799	Commercial	37.13	\$5,568,750	\$108,925	\$82,126
					Unbuildable	15.18			
	Subtotal	52.30	\$1,370,100	\$26,799	Subtotal	52.30	\$5,568,750	\$108,925	\$82,126
	Total	938.93	\$23,138,554	\$238,602		938.93	\$130,000,613	\$2,876,331	\$2,637,729

7.2.2.2 Safety

Anticipated safety impacts of Altemative B were determined by comparing crash costs associated with existing conditions to crash costs associated with improved conditions. For improved conditions, trucks currently passing through downtown Vergennes on Ma in Street (800 through trucks perday) would be reassigned to the new altemative a lignment roadway. The reduced traffic volumes on Ma in Street and sections of VT22A just north and south of the downtown area would result in fewercrashes on these segments. Trucks operating along the new altemative alignment roadway would add to the study area crash total.

The a nnual cost of crashes data for existing conditions presented above is summarized and presented aga in in Table 7-7. Table 7-7 also shows the expected crash costs with Altemative B. These calculations reflect a shift in truck traffic from Main Street and a one-mile section of VT22A to the 2.5 -mile bypass roadway. The assumed crash rates for Main Street and VT22A under future conditions are the same asthe existing rates. The bypass roadway would be built with a design speed and cross section similar to the design speed and cross section of VT22A south of Vergennes. Consequently, the existing crash rate for VT22A south of Vergennes was assumed for the bypass roadway. Based on these assumptions, the improvements proposed under Altemative B would reduce the a nnual cost of crashes in the study area by approximately \$12,000 peryear.

Table 7-7 Annual Cost of Crashes with Altemative B

Segment	Annual Cost of Crashes		
	Existing	Altamative B (Altemative Alignment)	Net Change
Ma in Street Downtown Vergennes	$\$ 342,000$	$\$ 314,082$	$\$(27,918)$
VT17	$\$ 174,000$	$\$ 174,000$	$\$--$
22A South of Downtown	$\$ 306,000$	$\$ 306,000$	$\$--$
22A North of Downtown	$\$ 36,000$	$\$ 33,000$	$\$(3,000)$
US7	$\$ 372,000$	$\$ 372,000$	$\$--$
Altemative Alignment Roadway	$\$ 0$	$\$ 18,615$	$\$ 18,615$
TOTAL	$\mathbf{\$ 1 , 2 3 0 , 0 0 0}$	$\mathbf{\$ 1 , 2 1 7 , 6 9 7}$	$\$(\mathbf{1 2 , 3 0 3})$

VT22A TRUCK ROUTE STUDY

7.2.2.3 Operations

Altemative B would require that through trucks travel a round Downtown Vergennes on the proposed bypass route rather than drive through the downtown on Main Street. The altemative alignment route would be longer, 2.5 miles, than the Main Street route (2.15 miles). The impact of the longer travel route on truck operations was determined.

The operations a nalysis compared conditions on the existing route on Main Street and along the proposed altemative alignment. Factors considered include:

- Route length;
- Assumed travel speed or speed limit;
- Truck volumes;
- Labor costs for truck drivers;
- Operating costs for truc ks ; and,
- Anticipated traffic control delays.

The route lengths were defined between the suggested northerly and southerly junctions of the altemative alignment roadway with VT22A. The distance along Main Street was sc aled from a vailable mapping. The distance for the altemative alignment route wasderived from the conceptual plan developed. A 40-mph travel speed was assumed for the altemative a lignment considering that the roadway would be built to standardsfor a $45-\mathrm{mph}$ design speed. For Main Street speeds vary by section reflecting posted speed limits of 25 mph downtown and 30 mph just outside of the downtown area. Traffic control delays were assumed foreach route. Along Main Street travel delays are imposed by existing signals a nd delay estimates were determined from the intersection operations a nalyses presented above. Also, implementation of the Altemative A improvements was assumed as a baseline condition. These improvements add a signal to Main Street at Panton Road however, enhanced signal interconnection and coordination is assumed such that the new signal would not add to the control delay. Along the altemative a lignment route, it is assumed that truck traffic would experience 20-second delays at the Panton Road and McDonough Drive crossings and when reentering VT22A. Assumed operating costs were taken from federal guidance and reflect a $\$ 28.60$ per hour labor rate for truck drivers and a $\$ 0.90$ per mile marginal vehic le operating cost. Finally, truck volumes were taken from an August 2018 vehicle classific ation count for VT22A conducted 1.2 miles north of VT17. Approximately 880 daily large and small trucks were counted in 2018. These volumes were increased by 11 percent consistent with the traffic forecasts presented above to reflect future (2043) design conditions. Also, ba sed on the vehicle tracking surveys conducted earlier, it was a ssumed that only 90 percent of the truck traffic would use the altemative alignment roadway. Local delivery vehicles would be allowed to continue using VT22A.

Based on these assumptions it was determined that the implementation of the Altemative B would have no signific ant impact on trucking operations in the comidor. The a nalysis results, included in the appendix a nd summarized in Table 7-8, indic ate that truck operating costs would increase by a modest a mount, $\$ 60,000$ per year or approximately five percent of the estimated a nnual operating costs.

Table 7-8 Annual Truck Operating Cost Comparison for Altemative B

Item	V/22A Route	Altemative Alignment Route			
Route Length	2.15 miles	2.50 miles			
Annual Vehic le Operating Cost	$\$ 596,000$	$\$ 693,000$			
Travel Time	5.00 minutes	4.75 minutes			
Annual Driver (Labor) Cost	$\$ 734,000$	$\$ 697,000$			
Total Annual Cost				$\mathbf{\$ 1 , 3 3 0 , 0 0 0}$	$\$ 1,390,000$

7.2.3 Benefit Cost Analysis

The project benefits a nd costspresented above have been combined to calculate a BenefitCost condition for Altemative B. The results of this a nalysis are shown in Table 7-9. As shown, the annualized implementation cost of the Altemative Alignment Roadway is $\$ 2.3$ million. The accumulated benefits with respect to downtown tax revenues, truck operating costs and vehic le crash reduction range from $\$ 142,000$ to $\$ 237,000$ per year. As such, the a ntic ipated project benefits equate to up to nine percent of the annual project cost.

Table 7-9 Benefit-Cost Calculation for Altemative B

Project Cost		Beneits	Low	High	Average
Implementation	\$39,000,000	Downtown Sales/Dining Tax Revenues	\$152,000	\$228,000	\$190,000
Amortized	\$2,300,000	Downtown Property Tax Revenues	\$38,000	\$57,000	\$47,500
Maintenance \& Depreciation	\$400,000	Subtotal	\$190,000	\$285,000	\$237,500
Total - Annual	\$2,700,000	Truck Operations	\$(60,000)	\$(60,000)	\$(60,000)
		Safety (Crash Reduction)	\$12,000	\$12,000	\$12,000
		Total	\$142,000	\$237,000	\$189,500
Benefit/Cost Ratio			5\%	9\%	7\%

The above calculation does not consider the potential economic benefits associated with the new roadway providing access to land that is presently undeveloped or underdeveloped. As desc ribed above, full build-out of all land a reascited in the a nalysis would generate new annual

VT22A TRUCK ROUIE STUDY

property tax revenues of $\$ 2.6$ million. Combined with the downtown tax benefits cited above, the new tax revenues would a pproximately match the $\$ 2.7$ million annual cost of the altemative alignment roadway. If potential new development of just the properties located in Vergennes is considered, the combined benefits would equal 74 percent of the amortized roadway costs.

The economic development benefits assumed are limited to property taxes generated by potential new development. Actual benefits may be substantia lly larger. A multiplier could be applied to the tax revenue estimates to reflect: new payroll taxes for new employees at the potential new development; increased sales for existing loc al businesses that would supply the potential new development; and, new sales and mealstax revenues in downtown Vergennes as employees in the new businesses visit downtown Vergennes.

7.2.4 Project Implementation

A new road and bridge of the scale proposed for Altemative B will take approximately ten years to complete after the project is selected and programmed forstate and federal fundsthrough inclusion in the AOTCapital Program. VTrans is currently revising its project selection and prioritization process for such projects, which will provide a path for new projects to compete for funding with otherneeds around the state. The project will have to score well based on eight criteria (safety, mobility/connectivity, asset condition, regional importance, economic access, flood resilience, environment and health access). In addition, there will need to be enough financial capacity so that once it is on the Capital Program, VTranscan camy it through to completion. Funding must be certain for NEPA environmental documentation, design, right-ofway acquisition and ultimately construction. At the time of this report, VTrans has committed funding to a number of long-tem projects in the Capital Program and funding for this altemative is not available inside of the five-year budget planning window.

Once the project is added to the AOTCapital Program, the first step will be preparation of an Environmental Impact Statement (EIS), which is the environmental documentation required to satisfy NEPA. The EIS would develop altemative plans, a ssess potential environmental impacts of each plan, and recommend a prefered plan based on the results of the analysis. Investigations regarding potential wetland impacts, archeological impacts and impactson historic properties, cited in this study, would need to be developed in much greater detail as part of the EIS. The selected altemative could then move into the design phase. Project permitting would be initiated understanding that the permitting process may help shape the roadway design. Near the end of the design phase work would begin to address right-of-way needs. Project construction could begin once the right-of-way is secured and design plans are in final form.

7.2.4.1 Risks and Timing

This project doesconta in risks inherent to new roadway construction outside of a ny existing right-of-way. The right-of-way process is a signific ant component of the project given the number of landowners involved. The right-of-way process allows for a ppeals which can impose unanticipated delays and costs.

VT22A TRUCK ROUIE STUDY

The permitting required for these improvements will be substantial. As noted above, an Environmental Impact Statement will be required to satisfy NEPA requirements. Both operational and construction stomwater pemits will be required. An Act 250 permit will a lso be necessary. Other state and federal permits will be required as described in Section 7.2.1.2 above. These permit processes involve public input and appeal periodswhich have the potential to prolong or derail projects.

As noted above, project implementation would require ten years to complete afterproject funding has been approved. VTrans indic ates that project funding is not available within the current five-year capital plan. However, rela tive to the eight criteria cited above that will be used to prionitize projects, this project should score well in at least six of the categories: safety, mobility/connectivity, asset condition, regional importance, economic access and environment.

7.3 ALTERNATIVE C - VT17 TRUCK ROUIE

Altemative C, the "VT17 Truck Route" altemative would restrict the flow of through trucks on Main Street in downtown Vergennes by directing trucks to use VT17 and US 7 to tra vel between Ferisburgh and Addison. As part of this plan, it is assumed that the design issues cited in the existing conditions section of this report would be addressed through reconstruction and widening of much of the roadway. The roadway would be rebuilt for a $50-\mathrm{mph}$ design speed with wider shoulders to more safely accommodate pedestrians and bic yclists. The roadway design would include a minimum 32 -feet wide cross section. The roadway would be realigned in some areas to address existing sight line and geometric constraints. Reconstruction would include shoulder widening and resurfacing for the entire 7.5 -mile roadway segment and more extensive work, full vertic al and horizontal rec onstruction, for a pproximately 4.5 miles of roadway. Even with the proposed improvements it is likely that some short sections of the roadway would still have grades in excess of six percent. Figure 7-6 loc ates the types of treatments proposed along the roadway. At the VT17/VT22A intersection, a roadway widening in the southeast comer of the intersection would be provided to better accommodate trucks tuming right from VT22A northbound to VT17 eastbound. No improvements are assumed at the VT17/US 7 intersection.

7.3.1 ProjectCosts

Implementation costs for Altemative C are based on the proposed work along VT17. As desc ribed above, four levels of treatment are assumed for the reconstruction of VT17. Unit costs (per mile reconstruction costs) for each treatment were obtained from a recent VTrans Project Definition Package prepared for a section of VTRoute 22A from Fa ir Haven to Orwell. This section of VT22A is being redesigned to address similar design constraints as found on VT 17. The four different levels of improvement and unit costs include:

1. Shoulder Reconstruction/Widening with Culvert Extensions or Replacements \$840,000/mile;
2. Pavement Reclaim with Stabilized Base a nd Shoulder Widening - $\$ 1,180,000 /$ mile;

VT22A TRUCK ROUIE STUDY

3. Full Depth Roadway Reconstruction on Existing Alignment - $\$ 4,200,000$ /mile; and
4. Full Depth Roadway Reconstruction with Improvements to Alignment - $\$ 5,250,000 /$ mile .

VT22A TRUCK ROUIE STUDY

Figure 7-6 Proposed Treatments forVT17-Altemative C Concept Plan

The above unit costs include costs for design, permitting, a nd construction inspection. These costs were applied to the appropriate VT 17 segment lengths to determine the project cost. Another $\$ 150,000$ was added for proposed improvements at the VT17/VT22A intersection. A total project cost of $\$ 23$ million was determined as shown in Table 7-10.

Table 7-10 Construction Cost Estimate for VT17 Improvements - Altemative C

Roadway Treatment	Miles Treated	Cost Per Mile	Teatment Cost
Minor Widening	2.97	$\$ 840,000$	$\$ 2,500,000$
Pavement Reclamation	0.21	$\$ 1,180,000$	$\$ 250,000$
Full Depth Reconstruction	3.17	$\$ 4,200,000$	$\$ 13,330,000$
Realignment	1.15	$\$ 5,250,000$	$\$ 6,050,000$
Subtotal	7.3	Lump sum	$\$ 22,130,000$
Intersection Widening (VT17/VT22A)	One location	$\$ 150,000$	
TOTAL			$\$ 22,280,000$
ROUNDED TOTAL			$\$ 23,000,000$

7.3.1.1 Right-of-Way Constraints

Altemative C will have very limited right-of-way impacts. (The existing right-of-way is 65.5 feet and the proposed roadway width is 32 feet.) Shifts in the roadway alignment are expected at five or six loc ations where minor right-of-way impacts could occur. The overall right-of-way cost is not expected to exceed $\$ 10,000$.

7.3.1.2 Environmental Constraints and Permits

In several areas where substantial grade changes to the vertic al alignment of VT17 are proposed, unavoidable environmental impacts must be mitigated. Widening the roadway at stream crossings will require longer culverts and direct impacts to known, mapped wetland resources and related buffer zones. The project design must seek to minimize these impacts and, depending on the scale of the impact, provide mitigation for una voidable impacts. Mitigation may include financial contributions to enhance existing wetland resources. Mitigation strategies must be reviewed and approved at several levels of govemment as disc ussed above relative to Altemative B. Based on mapping of known wetlands and water resources, the direct wetland resources impacted by this altemative total approximately 0.6 acres. Assuming mitigation costs of $\$ 130,000$ per acre (as assumed for Altemative B), the wetland mitigation costs for Altemative C total a pproximately $\$ 78,000$. This does not account for any wetla nd buffer-related impacts or permit a pplic ation fees.

VT22A TRUCK ROUIE STUDY

Another potential a rea for environmental impact relates to land classified by the state as Prime Agric ultural Soils and Soils with Sta tewide Signific a nce. Again, project design should seek to minimize these impacts and a void fragmenting farmland via coordination with the USDA Soil Conservation Service and the Vermont Agency of Agric ulture, Food and Markets. Given that this altemative involves widening of an existing road, fragmentation of prime a gricultural soils is not a concem. Possible unavoidable impacts must be mitigated. Again, this is typically accomplished by purchasing and protecting a gric ultural landselsewhere. Based on the Act 250 Criterion 9(B) 2018 Off-Site Mitigation Fees, Prime Agric ultural Soil mitigation would cost $\$ 1,584$ per acre in the project area. Assuming a ten-feet wide impact on both sides of the entire length of VT 17 for road improvements, Altemative C would impact an estimated 20 a cres of Prime Agric ultural Soils a nd Soils with Statewide Significance. This a very conservative estimate as farming does not occur within ten feet of the roadway in most locations. Assessing all of these soil impacts as Prime Agric ultural Soils, the total "soils" mitigation cost for Altemative C would be a pproximately \$35,000 in c urrent dollars.

Other potential areas of environmental impact relate to rare and endangered species habitat a nd conta minated soils. Ba sed on the available mapping provided in the existing conditions section of this study, direct impacts to rare bat habitat may result from tree clearing. Tree clearing would be limited to trees along the roadway edge rather than forested areas. Consequently, impacts should be nominal.

7.3.1.3 Amortization

The total implementation costs for Altemative C were determined and a mortized to estimate an annual cost for the project. Planning, design, pemitting and construction services feeswere estimated at $\$ 22.1$ million and this figure was rounded up to $\$ 23$ million to be conservative. The estima ted environmental mitigation cost is $\$ 113,000$ a nd the estimated right-of-way cost is under $\$ 20,000$. Combined these costs are much less than the $\$ 700,000$ added in rounding up the construction cost. Consequently, a total implementation cost of $\$ 23$ million is assumed. Given the scope and cost of this project, the amortization a nalysis a ssumes that the project would be funded with state-issued, tax-free bonds a mortized over a 30-year period. Applying an interest rate of 2.5 percent and a 30-year a mortization period indic ates an annual cost of $\$ 1,342,000$.

7.3.2 ProjectImpacts

Potential benefits a ssociated with project implementation a re qua ntified in this section. In general, the project will remove through truck traffic from downtown Vergennes having positive impacts on the vita lity and vibrancy of the downtown. The monetary value of these benefits is considered by estimating inc reases in la nd values a nd tax assessments. The removal of truck traffic from other sections of VT22A will also have positive quality of life impacts on residential properties outside of downtown Vergennes. Negative quality of life impacts would be realized at residential properties along VT17 where truck traffic volumes would increase. Proposed roadway upgrades however would have positive impacts on road sa fety a long VT17. Finally, the rerouting of truck traffic, to a longer north/south route a round downtown Vergennes, would inc rease operating costs for truckers.

VT22A TRUCK ROUIE STUDY

7.3.2.1 Quality of Life/Ec onomic

Altemative C will bring an enhanced quality of life to downtown Vergennes and properties abutting VT22A north and south of the downtown area. Negative impacts to property values are anticipated along VT17.

Altemative C would restrict through trucks from VT22A between VT17 and US 7. The removal of trucks would offereconomic benefitsto downtown Vergennes as desc ribed in the disc ussion of Altemative B. These benefits would extend to other properties along VT22A outside the downtown area. The benefits outside the downtown area would be less signific ant. Commercial properties outside the downtown area would likely be unaffected by the truck trip reassignment as these properties, unlike downtown business, are typic ally set further back from the road, provide on-site parking and do not cater to pedestrian traffic. Residential properties along VT 22A outside of the downtown area are likewise set back much further from the road than residential properties in the downtown area. Removing trucks and their associated noise, emissions, dust and vibration impacts from VT22A will have a less signific ant impact on residential propertiesoutside of the downtown area compared to downtown properties. Similarly, the negative quality of life impactsassociated with adding truck traffic to VT17 will be more muted compared to these impacts in the downtown area.

The results of the downtown qua lity of live/economic impact a nalysis for Altemative B apply to Altemative C. The removal of truck traffic from downtown would increase annual retail sales, dining and alcohol taxes by $\$ 152,000$ to $\$ 228,000$ peryear. Real estate taxes would increase by $\$ 38,000$ to $\$ 57,000$ peryear as noted in Table 7-11.

Table 7-11 Potential Economic Benefits Assoc iated with Altemative C

		Assumed Change Due to Project(\%)		Change Due to Project (\$)	
	Existing	Low Estimate	High Estimate	Iow Estimate	Figh Estimate
Downtown Commercial Activity					
Annual Retail/Dining Revenues	\$18,000,000	10\%	15\%	\$1,832,000	\$2,748,000
Annual Retail/Dining Tax Revenue	\$1,270,000	10\%	15\%	\$152,000	\$228,000
Downtown Real Estate					
Commercial Property Values	\$16,750,000	10\%	15\%	\$1,676,000	\$2,513,000
Real Estate Tax Revenue	\$380,000	10\%	15\%	\$38,000	\$57,000
VT22A Real Estate - Outside of the Downtown Area					
Residential Property Values	\$20,700,000	2\%	5\%	\$414,000	\$1,035,000
Real Estate Tax Revenue	\$435,000	2\%	5\%	\$9000	\$22,000
VT17 Real Estate - VT22A to US 7					
Residential Property Values	\$9,500,000	-2\%	-5\%	-\$190,000	-\$480,000
Real Estate Tax Revenue	\$200,000	-2\%	-5\%	-\$4000	-\$10,000
Total Tax Revenues				\$195,000	\$297,000

Residential properties a long VT22A outside of downtown Vergennes would experience increased property values and generate higher property tax revenues under Altemative C. Grand List data from Vergennes, Panton and Addison were compiled for these properties. A total of 115 residential properties were identified representing 160 acres of developed land valued at $\$ 20.7$ million. Applying a "blended" tax rate of $\$ 2.10$ per $\$ 100$ in assessed value, (tax rates vary in each municipa lity), the residential properties generate annual tax revenues of $\$ 435,000$ peryear. Assuming a two to five percent inc rease in property valuesdue to the removal of truck traffic, the assessed values of these properties would inc rease by $\$ 400,000$ to $\$ 1$ million and annual tax revenues would increase by $\$ 9000$ to $\$ 22,000$.

The benefits rea lized along VT22A would be offset, in part, by negative impacts to residential properties along VT17. Residential properties along VT17 between VT22A and US 7 would

VT22A TRUCK ROUIE STUDY

expenience decreased property values and generate lower property tax revenues under Altemative C. (No impact to residential properties along US 7 between VT17 and VT22A is assumed. This roadway segment would also experience an increase in truck traffic under Altemative C, however, given the existing volumes of truck and all vehic ular traffic on US 7 , the added truck traffic may not measurably impact residential property values.) Grand List data from New Haven, Waltham and Addison were compiled foraffected properties along VT17. A total of 34 properties were identified representing 99 acres of developed land valued at $\$ 9.5$ million. Applying a tax rate of $\$ 2.10$ per $\$ 100$ in assessed value, the residential properties generate annual tax revenues of $\$ 200,000$ per year. Assuming a two to five percent decrease in property values due to the addition of truck traffic, the assessed values of these properties would decrease by $\$ 190,000$ to $\$ 480,000$ and annual tax revenues would decrease by $\$ 4000$ to $\$ 10,000$.

7.3.2.2 Safety

Anticipated safety impacts for Altemative C were determined by comparing crash costs associated with existing conditionsto crash costs associated with proposed conditions. For proposed conditions, trucks currently passing through Downtown Vergennes on Ma in Street (800 through trucks perday) would be reassigned to VT17 and US 7. The reduced traffic volumes on Main Street and VT22A between US 7 and VT17 would result in fewercrashes on these segments. Trucks operating a long VT17 would add to the study a rea crash total.

The a nnual cost of crashes data for existing conditions presented above is summarized aga in in Table 7-12. Table 7-12 also shows the expected crash costs with Altemative C. These calculations reflect a shift in truck traffic from VT22A to VT17 and US 7. Also, the assumed crash rates for all roadway segments under future conditions are the same as the existing rates with one exception. The rate forVT17 waslowered to match the rate forVT22A south of Vergennes reflecting proposed geometric/safety changes that would be made to VT17 under Altemative C. Based on these assumptions, the improvements proposed under Altemative C would reduce the number of crashes in the study area and the annual cost of crashes by a proximately \$37,000 peryear.

Table 7-12 Annual Cost of Crashes with Altemative C

	Annual Cost of Crashes		
Roadway Segment	Existing	Altemative C (VI 17 Truck Route)	Net Change
Main Street Downtown Vergennes	$\$ 342,000$	$\$ 314,082$	$\$(27,918)$
VT17	$\$ 174,000$	$\$ 172,189$	$\$(1,811)$
22A South of Downtown	$\$ 306,000$	$\$ 262,286$	$\$(43,714)$
22A North of Downtown	$\$ 36,000$	$\$ 32,000$	$\$(4,000)$
US7	$\$ 372,000$	$\$ 412,216$	$\$ 40,216$
TOTAL	$\$ \mathbf{1 , 2 3 0 , 0 0 0}$	$\$ \mathbf{1 , 1 9 2 , 7 7 2}$	$\$(\mathbf{3 7 , 2 2 8})$

7.3.2.3 Operations

Altemative C would require that through trucks use VT17 and US 7 to a void travelling through Downtown Vergennes. This altemative route between the VT17/VT22A intersection in Addison and the VT22A/US 7 intersection in Vergennes is longer than the existing route preferred by truckers on VT22A through Vergennes. The impact of the longer travel route on truck operations was determined in the same manner as was done for Altemative B.

The operations a nalysis compa red conditions on the existing route (VT22A) a nd along the proposed altemative route. With the proposed upgrades a speed of 45 mph was assumed for tra vel on VT17. A 50-mph speed was assumed for US 7. Along VT22A south of Vergennes a 50mph speed was also assumed. Trip lengths are 7.5 miles on the existing route and 12.7 miles on the altemative route. Along the VT17/US 7 route, travel delays (60 secondstotal) are assumed for the signal at the Monkton Road/US 7 intersection and for stop signs that would be encountered (depending upon the travel direction) at the VT17/VT22A intersection in Addison and the VT17/US 7 intersection in New Haven.

Based on these assumptions, and others that were documented above for the a nalysis of Altemative B, it was determined that the implementation of the Altemative C would significantly impact trucking operations in the comidor. The a nalysis results, inc luded in the appendix and summarized in Table 7-13, indic ate that truck operating costs would increase by a pproximately, $\$ 2.2$ million per year or by approximately 60 percent of the estimated existing annual operating costs.

Table 7-13 Annual Truck Operating Cost Comparison - Altemative C

Item	Vr22A Route	Vr17/US 7 Route
Route Length	7.5 miles	12.7 miles
Annual Vehicle Operating Cost	$\$ 2,080,000$	$\$ 3,520,000$
TraveI Time	11.7 minutes	17.2 minutes
Annual Driver (Labor) Cost	$\$ 1,720,000$	$\$ 2,530,000$
Total Annual Cost	$\$ 3,800,000$	$\$ 6,050,000$

7.3.3 Benefit Cost Analysis

The project benefits a nd costspresented above have been combined to in Table 7-14 for Altemative C. As shown, the a nnualized cost of to rebuild VT 17 is approximately $\$ 1.3$ million. The combined "benefits" with respect to tax revenues, truck operating costs and vehicle crash reduction are on the order of negative $\$ 1.9$ million peryear. The negative value is a direct consequence of the added cost of freight movement on VT17. Ignoring truck operating costs, the net benefits are $\$ 232,000$ to $\$ 334,000$ per year which equates to a pproximately 17 to 25 percent of the a nnual project cost.

Table 7-14 Benefit-Cost Calculation for Altemative C

7.3.4 Project Implementation

The scope of work proposed for Altemative C ($\$ 23$ million) is on a comparable scale to the work proposed for Altemative B ($\$ 39$ million). Consequently, the implementation process for Altemative C will be comparable to the process for Altemative B. However, since the work will generally occur a long an existing highway alignment the environmental permitting and right-ofway elements will be less complex. Again, it will take approximately ten years to complete the project after it is selected and programmed for state and federal funds through the AOTCapital Program. The project will be subject to the new VTrans project selection and priontization processcited above. Once selected and prioritized, the project will be eligible funding when available. As noted above, VTrans hascommitted funding to a number of long-tem projects in the Capital Program and funding for this altemative is not availa ble inside of the current fiveyear budget planning window.

Once the project is added to the AOTCapital Program, project design and environmental permitting could begin. Design concepts will consider potential wetland impacts, archeological impacts and impacts on historic properties. Project pemitting would be initiated understanding that the permitting process may help shape the roadway design. Near the end of the design phase work would begin on the right-of-way needsfor proposed changes in the roadway
alignment. Project construction could begin once the right-of-way is secured and design plans are in final form.

7.3.4.1 Risks and Timing

The risks associated with Altemative C are mainly limited to right-of-way issues. As noted above however, the new right-of-way necessary is limited to properties where alignment shifts would be required. Another concem relates to the proximity of historic properties to the roadway. A complete inventory of historic properties has not been conducted. Should such properties be impacted by the proposed realignment changes this could alter the project design. Most likely, design modific ations could be considered to address a ny historic impact or right-of-way issues.

The total length of time to implement Altemative C is estimated at 13 to 15 years. Again, given the limited environmental impacts assoc iated with work within an existing roadway a lignment, the pemitting process may be two years shorter than the process for Altemative B. Project implementation would require eight-to-ten years afterfunding is approved. Funding forthe project however, would not be available within the next five years based on VTrans' current commitments.

7.4 EVALATION SUMMARY

The a nalyses conducted of each of the altematives were summarized and compared. Figure 7-7 presents the project cost, project impact, feasibility a nd benefit/cost data foreach altemative. As noted, Altemative A, the In-Line altemative is the lowest cost altemative and easiest to implement. The total project cost is approximately $\$ 1,900,000$ and it could be implemented in two to five years. Elements of the plan may in fact be constructed by VTrans within the next two years. Since Altemative A does not divert signific ant truck traffic from downtown Vergennes, the quality of life/economic benefits derived from this altemative are not as substantial asthose associated with the other two altematives. However, the value of the benefits associated with this altemative exceed the costs. The benefit/cost ratio is 1.08 .

Altematives B and C would remove all through truck traffic from VT22A in downtown Vergennes and consequently provide significant and positive quality of life/economic impacts. The estimated value of these downtown benefits is nearly $\$ 240,000$ per year. The costs to achieve these benefits however are an order of magnitude greater than the costs associated with Altemative A. The implementation cost for Altemative B, the Altemative Alignment altemative, is approximately $\$ 39$ million and the cost forAltemative \mathbf{C}, the Route 17 Truck Route altemative is $\$ 23$ million. Both projects would take at least eight years to complete. Altemative B, while more expensive than Altemative C, has the potential to stimulate new development and provide significant economic benefits overtime. The new land development that could occuralong the new altemative alignment roadway would generate tax revenues nearly equal to the cost of this altemative. Ignoring potential new development impacts, the benefit/cost ratio for Altemative B is 0.08 . Altemative C does not support economic impacts outside of downtown Vergennes. Also, under Altemative C , the rerouting of truck traffic from VT22A to VT17 would increase shipping costs by more than $\$ 2$ million per year. The higher shipping costs would likely
be added to the cost of goods shipped placing a burden on consumers. When these costs are considered the benefit/cost ratio for Altemative C is a negative number.

Figure 7-7 Evaluation Summary

Catergory	Alt. A	Alt. B	Alt. C
Project Implementation Costs			
Construction	\$ 1,900,000	\$ 27,500,000	\$ 17,500,000
Design \& Permitting	included in construction	\$ 8,500,000	\$ 5,390,000
Land Acquistion	nominal	\$ 2,150,000	\$ 10,000
Mitigation	\$	\$ 600,000	\$ 100,000
TOTAL (Lump Sum)	\$ 1,900,000	\$ 38,750,000	\$ 23,000,000
TOTAL (Annualized)	\$ 110,000	\$ 2,700,000	\$ 1,285,000
Project Impacts (Annualized)			
Economic-Downtown	\$ 66,500	\$ 237,500	\$ 237,500
Economic-Outside of Downtown	\$	\$ 2,600,000	\$ 8,500
Safety (Crashes)	\$ 52,000	\$ 12,000	\$ 37,000
Truck Operations	\$	\$ (60,000)	\$ (2,250,000)
TOTAL	\$ 118,500	\$ 2,789,500	\$ (1,967,000)
Feasibility			
Probability of success	Very High	High	High
Timing	2 to 5 years	10 to 15 years	8 to 12 years
Benefit/Cost Ratio			
Base Case	1.08	1.03	-1.53
Modified*	1.44	0.07	0.22

* For Alternative A it is assumed that one quarter of the implementation cost is covered by the planned Class I Paving Project. For Alternative B it is assumed that the economic benefits occurring outside of the Downtown are omitted form the calculation. For Alternative C it is assumed that the truck operations impacts are omitted from the calculation.

8.0 RECOMMENDATIONS

The altematives analysis indic ates that both Altematives A and B represent worthwhile investments to address the project purpose and need. Altemative B, the Altemative Alignment plan, is a large project (estimated $\$ 49$ million value) that will take ten to 15 years to complete. However, it will provide very substantial and positive impacts for downtown Vergennes virtually eliminating all truck traffic passing through on Main Street. Downtown property values, retail revenues and dining revenues are expected to increase signific a ntly with the truck traffic removed. The value of potential new development that could occur along the new roadway could reach $\$ 130$ million. New tax revenues generated by this level of development would approximately match the annualized cost of the new roadway. This project would likely score very well against the large project prionitization criteria currently being developed by VTrans.

VT22A TRUCK ROUIE STUDY

Accordingly, it is recommended that the City of Vergennes, the Addison County Regional Planning Commission and its member communitiesformally endorse this proposal and petition VTransto include it in its Capital Program. The suggested roadway should be added to the City Plan and opportunities to make other public investmentsto support economic development along the new alignment roadway should be explored.

Given the extended timeframe to implement Altemative B, and the opportunity to immediately make certa in Main Street improvements as part of planning VT22A repaving project, it is recommended that the City, ACRPC and member communities also formally endorse and pursue funding for the Altemative A improvements. These proposed improvements will not substantially change the volume of truck traffic in downtown Vergennes however, they would create a more comfortable environment for pedestria ns and bic yc list circulation. This added comfort level should also provide a slight stimulus to downtown businesses. Even the modest economic stimulus assumed in this study results in a positive benefit/cost ratio for Altemative A. Most importantly, the Altemative A improvements can be implemented in as little as a five-year timeframe providing near-tem relief from the impacts of truck traffic.

Pursuit of Altemative C, the VT17 Truck Route altemative, is not recommended at the present time. The cost to implement this altemative, $\$ 23$ million, is less than the cost of Altemative B and it would have the same positive impacts on truck traffic in downtown Vergennes as Altemative B. However, this altemative would also take ten to fifteen years to implement and it does not provide any notable support for new economic development in the area. More importantly, it has substantial negative impacts on truck operations forc ing truckers to travel a longer route than desired. When the added transportation costs are considered, this project has a negative benefit/cost ratio. This altemative would also have negative quality of life and property value impacts along VT17.

9.0 COMMUNITY OUTREACH

Throughout the conduct of this study a project website and email address were maintained to receive public comment. However, comments were predominantly received via two public meetings. The first meeting held in September 2018 included a presentation of existing conditions data and a description of the altematives under investigation. Attendees at the meeting voiced their concems regarding the impacts of truckson downtown Vergennes and the need to move the truck problem to other communities. A second hearing was held in April 2019 to present the results of the altematives a nalysis and the consultant's recommendations. The hearing was preceded by an hour-long "open house" inviting one-on-one conversations between the public and members of the project team.

At the close of the April 2019 public meeting the audience was asked to expresstheir opinions regarding the three altematives considered. The community overwhelming supported implementing the in-line altemative, Altemative A, in coordination with the planned VTrans paving project to alleviate the truck issue in the short term. The community also recognized that the in-line altemative does not remove trucks from downtown and then overwhelmingly

VT22A TRUCK ROUIE STUDY

supported the new roadway alignment altemative, Altemative B. Recognizing the significant economic development potential associated with Altemative V , the mayor of Vergennes renamed Altemative Bas the Vergennes Ec onomic Corridor. Minutes from the two public hearings are included in the report appendix along with written comments received on the study.

us0286-ppfss01\ shared_projects\ 195311604\ transportation\ report| working drafts 2019-04-26_draft_glb.docx

[^0]: ${ }^{1}$ Community Planning \& Design with Buckhurst Fish \& J acquemart Inc, Kathleen Ryan, Landscape Architect, and Pinkham Engineering Associates, Inc. November 1995. Vergennes Route 22A Bypass Prelimina ry Design Report.
 ${ }^{2}$ Dufresne-Henry. J uly 2002. GreaterVergennes Traffic Impact Fea sibility Study.

[^1]: ${ }^{3} \mathrm{http}: / /$ anmaps.vermont.gov/websites/a nra/
 ${ }^{4} \mathrm{http}: / /$ geodata.vermont.gov/data sets/a6041c 19b39d 4357b30dc 13f9a5fe2bc_0
 ${ }^{5}$ RSG Inc. April 2016. VTRANS on Road Bic ycle Plan: Phase 1 Report.

[^2]: ${ }^{6}$ Cambridge Systematics, Inc. May 2012. Vemont Freight Plan

