

Heat Pump Showcase Addison County Regional Planning Commission

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Domestic Hot Water systems

Refrigeration cycle

Gauging energy efficiency

- HSPF Heating Seasonal Performance Factor
- SEER Seasonal Energy Efficiency Ratio
- EER Energy Efficiency Ratio
- COP Coefficient of Performance
- NEEP Northern Energy Efficiency Partnership https://neep.org/ASHP-Specification

NEEP ccHP Specification v3.0

- For Non-Ducted systems: HSPF >10
- For Ducted systems: HSPF >9
- COP @5°F >1.75 (at maximum capacity operation)
- SEER > 15

Single zone mini-split

Good news

- Customers love these things
- Cost effective
- Easy retrofit
- Best efficiency of all air sourced heat pumps
- Great low temp capability
- Indoor unit options

Challenges

- Non-distributed
- Comfort
- Sizing and selecting
- Zoning
- Systems integration

Single zone ductless mini split

- Up to HSPF 15, SEER 42, highest of all air source heat pumps
- Over 800 systems on NEEP list
- Up to about 30 KBtu at 5F
- Over 100% rated heating capacity at 5F
- Up to 8:1 turndown

Single zone mini split indoor options

- Compact Duct still considered mini split
- Ductless Floor looks like space heater
- Ductless Wall usually best listed performance
- Ceiling Cassettes variety of styles, don't install in attic

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Domestic Hot Water systems

Multi zone ductless heat pumps

Good News

- Single outdoor unit serves multiple indoor units
- Reduced electric infrastructure
- Indoor options

Challenges

- Do not modulate as well as single zones
 - Performance and comfort implications
- Difficulty matching partial loads in small spaces
- Lower listed performance than single zones
- Still need load calcs,
 - block load
 - room by room
 - Sensible and latent

Multi zone ductless mini split

- Up to HSPF 12.5, SEER 19,
- 208 systems on NEEP list
- Up to about 60 KBtu at 5F
- Over 100% rated heating capacity at 5F
- Up to 4:1 turndown

Special Bulletin: Multi Split Heat Pumps

- Single zone systems are recommended over multi zone
- Never oversize multi zone heat pumps, size for partial load offset where possible
- Never size multi zone heat pumps based on number of zones

One more thing about mini split heat pumps... they need to be

cleaned.

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Domestic Hot Water systems

Compact Ducted AKA "ducted mini split"

- Minimal ducting, low static pressure systems
- Good for adjacent rooms
- Slightly lower performance vs single zone mini split
- Connect to HRV? Yes or no?
- 30 Single Zone mini-split compact ducted systems currently on EVT QPL
- EVT rebates found on Mini Split QPL

Rules of Thumb for Static pressure in a duct system

- As a rule of thumb, it's not a good idea to use rules of thumb for HVAC design. -John Semmelhack
- Ducts and fittings may need to be larger than you'd think.
- Duct runs should be short, with minimal fittings.
- ACCA Manual D is a good place to start.
- Compact ducted systems range in allowable static pressure from 0.2"-0.6" wg

Compact Ducted vs Multi Zone

Multi Zone vs Compact Ducted

Heating / Cooling	Outdoor Dry Bulb	Indoor Dry Bulb	Unit	Min	Rated	Max
Heating	5°F	70°F	Btu/h	12,500	54	25,000
			kW	1.6	29	3.82
			COP	2.29	25	1.92
Heating	17°F	70°F	Btu/h	13,100	14,000	25,000
			kW	1.5	1.62	3.56
			COP	2,56	2.53	2.06
Heating	47°F	70°F	Btu/h	11,400	25,000	25,000
			kW	0.93	1.72	1.72
			COP	3.59	4.26	4.26
Cooling	82°F	80°F	Btu/h	15,060	25	23,600
			kW	0.68	20	3.77
			COP	6.49	-	1.83
Cooling	95°F	80°F	Btu/h	12,600	22,000	23,600
			kW	0.53	1.63	3,77
			COP	6.97	3,96	1.83

Heating / Cooling	Outdoor Dry Bulb	Indoor Dry Bulb	Unit	Min	Rated	Max
Heating	5°F	70°F	Btu/h	3,800	-	12,000
			kW	0.25	858	1.22
			COP	4.45	1520	2.88
Heating	17°F	70°F	Btu/h	4,900	13,900	13,900
			kW	0.31	1.42	1,42
			COP	4.63	2.87	2.87
Heating	47°F	70°F	Btu/h	8,100	21,600	25,600
			kW	0.43	1.58	2.12
			COP	5.52	4.01	3.54
Cooling	82°F	80°F	Btu/h	6,700	270	18,900
			kW	0.25	V2.	1.1
			COP	7.85	-	5.04
Cooling	95°F	80°F	Btu/h	6,100	18,000	18,000
			kW	0.32	1.31	1.31
			COP	5.59	4.03	4.03

MXZ-3C24NAHZ2 Multi Zone Ductless SUZ-KA18NA2 / SEZ-KD18NA Compact Duct

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Domestic Hot Water systems

Centrally Ducted Heat Pumps

Centrally Ducted Heat Pumps

- Whole house option, using ducted distribution
- Provide heating and AC
- Replace central AC unit w/Heat Pump
- Keep existing furnace in place
 - Offset dirty and expensive heating fuels used by the furnace
- New construction or retrofit

Control Strategy

Capacity Balance Point:

 outdoor temperature at which the capacity of a heat pump equals the heating load in the house.

Economic Balance Point:

 Outdoor temperature at which cost to operate heat pump equals cost to operate backup heat

Balance Point, Capacity

Balance Point, economic

Control Strategy Goals

- Reduce emissions
 - Reduce Loads, Weatherize the Building
 - Install unit sized close to design heating load
 - Use capacity balance point
- Save money
 - Use economic balance point to operate system
 - Caution this will change with fuel prices
- Have this conversation with customer and show them how to set the balance point
- Use Dual Fuel capable thermostat

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Domestic Hot Water systems

Benefits of ATW

- Comfortable
 - **≻**Zonal
 - > Fully Distributed
 - > Reduced stratification
 - **≻**Quiet

Mono-bloc

 Refrigerant to water Heat exchange is

outside

Split Systems

 Refrigerant to water heat exchange is

inside

Performance of ATW

- HSPF? SEER? NOPE!
- AHRI does not list/test
- No ENERGY STAR®
- IPLV Integrated Part Load Value
- COP Static points for varying outdoor and delivered water temperatures

COP Example

Supply				
Water	Ambient	Capacity		
Temp F	Temp °F	BTU/hr	Watts	COP
110	-5	37,500	3880	2.30
	17	44,800	3970	2.70
	47	60,580	4263	3.75
120	-5	38,500	4513	2.00
	17	46,440	5790	2.35
	47	66,480	5963	3.26
130	-5	40,425	5249	1.86
	17	48,762	5371	2.18
	47	69,804	6768	3.04

Performance of ATW

- Overall Very Good!
- Better with low supply water temperatures
- Similar to ductless, but does not account for distribution energy
- Good cold weather performance, but...
- We need a good metric and cold climate specification

Buffer Tanks

- Small, not thermal storage (25-40 gal common)
- Prevents short-cycling
- Optimizes operation
- Not always needed (modulating systems)
- Adds cost/complexity
- Some DR opportunity

Why they installed an Air to Water heat pump

Homeowner reflections

- Very happy with system, 1st heating season coming up
- Needed new \$1000+ electric panel (bummer)
- The whole project took longer and cost more than original estimates
- Need a fair bit of utility room space for split system, buffer tank and HP water heater
- Really glad they went with HP water heater

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Advanced Pellet heating
Distribution systems
Ventilation
Domestic Hot Water systems

Ground Source Heat Pumps

Ground Source Heat Pumps

Benefits:

- Can be sized to meet load, no back up needed
- Good COPs, efficient systems
- Performance not dependent on outdoor temps
- Can heat DHW
- Hydronic or Air distribution
- Tax Credits

Ground Source Heat PumpsThree Part Systems

1. Earth Connection Subsystem

Heat source in winter, Heat sink in summer

2. Heat Pump Subsystem

Removes heat/cool from ground, concentrates it

3. Heat Distribution System

Distribute concentrated heat/cool throughout building

Ground Source Heat Pumps

Image stolen from the internet

Geothermal System Overview

Simple Concept Meets Reality

Ground Source Heat Pumps and Domestic Hot Water

Desuperheater

- Transfer excess heat from compressor to DHW tank
- Only works when GSHP is running, may not meet
 DHW loads at all times

Full Demand

- Manufacturer installs separate heat exchanger
- Meets all household DWH needs

Separate DHW system

- HPWH

Equipment Types

Mini split heat pumps
Ducted heat pumps
Air To Water heat pumps
Ground Source heat pumps
Domestic Hot Water systems

Water Heating

Sanden C02, split system water heater

- Indoor tank
 - 43 gal
 - 83 gal
 - 119 gal
- Outdoor refrigeration system
 - Run water outdoors
 - No refrigerant indoors
 - Natural refrigerant!

Drain Water Heat Recovery

- Preheat cold water supply to DHW
- 40-60% recovery efficiency
- Reduce energy for DHW
- Improve capacity of water heater

© 2009 RenewABILITY Energy Inc.

Equal Flow Plumbing

CSA B55.1 performance testing

Best Practice when feasible

Not just for new construction projects

Water Heater Replacement

Water Heater Replacement

Drain Water Heat Recovery

Drain Water Heat Recovery

Getting that other drain

Equal Flow Plumbing

Combined DWHR and HPWH

Water Heating Bottom Line

- Be deliberate about the water heating strategy
 - It can be the biggest load in the house
- Heat pump water heaters may need cooling and noise mitigation strategies
- Water conservation and heat recovery are just as important as high efficiency water heating
- Reduce plumbing core in new construction

Thank You

Matt Sargent
Efficiency Vermont
802-540-7619
msargent@veic.org

