U.S. 7 / Exchange Street Intersection: Traffic and Safety Improvements

Scoping Study

September 29, 2004

Submitted to:

Addison
County
Regional
Planning
Commission

Submitted by:

55 Green Mountain Drive P.O. Box 2246 So. Burlington, VT 05407 (802) 864-0223

Contents

Introduction	5
Purpose and Need Statement	6
Purpose	6
Purpose and Need Statement Purpose	
Project Location	7
Intersection Description	7
Background Information	9
Existing Issues	9
e e e e e e e e e e e e e e e e e e e	
<u> </u>	
0 0	
Traffic	11
Traffic Volumes	11
Traffic Analysis Methodology	11
Signal Warrant Performance	12
Signalized Intersection Performance	13
Purpose	14
Design Criteria	15
Design Criteria	15
Interim Safety Measures	17
Comprehensive Interim Safety Measures	17
Alternatives Evaluation	18
No Action	
Disadvantages	18

Signal	I Alternative 1A	18
	Order of Magnitude of Cost	
	Advantages	
	Disadvantages	
Signal	I Alternative 1B	
	Order of Magnitude of Cost	
	Advantages	
	Disadvantages	20
Round	dabout Alternative	20
	Order of Magnitude of Cost	
	Roundabout Background Information	
	Advantages	
	Disadvantages	21
Evalua	ation Matrix	25
Public	: Meetings	27
Alterna	atives Presentation – August 10, 2004	27
Public	: Meetings – September 29, 2004	27
Conclu	usions and Recommendations	28
Appen	ndix Summary	29
Appen	ndix A – Meeting Minutes	
Appen	ndix B – Correspondence	
Appen	ndix C - Traffic	
Appen	ndix D – Conceptual Cost Estimates	
Appen	ndix E – Draft Scoping Study Comments	

Introduction

The Transportation Advisory Committee of the Addison County Regional Planning Commission (ACRPC) selected Dufresne-Henry to study the intersection of U.S. Route 7 / Exchange Street and Happy Valley Road. The study reviews existing conditions, determines needs, evaluates alternatives and recommends improvements. Land development and traffic increases have raised delays and safety concerns at this intersection. The following are alternatives evaluated in this report:

No Action Signal Alternative 1A Signal Alternative 1B Roundabout Alternative

Purpose and Need Statement

Purpose

The purpose of the Exchange Street / Happy Valley Road / U.S. 7 Intersection project is to improve the safety and operation of the intersection and enhance the "Gateway to Middlebury."

Need

Currently U.S. 7 is one of Vermont's major north/south transportation corridors that functions as a principle arterial. U.S. 7 is currently the throughway and the two side streets are maintained by stop signs. The following notable issues/deficiencies define the need for improvements:

- Improve sight distance and safety for turning vehicles.
- Reduce delay on Exchange Street approach.
- Accommodate growth of Middlebury and on Exchange Street.
- Provide a gateway to Middlebury.

Project Location

Intersection Description

U.S. Route 7 is one of Vermont's major north / south transportation corridors. It functions as a principle arterial, is state owned and maintained, and has an average annual daily traffic (AADT) of approximately 10,200 vehicles. Exchange Street provides access to the Middlebury industrial area and is an alternative route connecting Middlebury Village and U.S. Route 7 North. The intersection forms the northern gateway to Middlebury. Figure 1 shows the existing project location for this intersection.

Photograph 1: Happy Valley Road, Route 7 and Exchange Street Intersection in Middlebury, Vermont.

Figure 1: Existing Project Location Plan for the Exchange Street / Happy Valley / Route 7 Intersection.

Background Information

Existing Issues

Roadway

This area of U.S. 7 was reconstructed in 1973 by Vermont Agency of Transportation (VTRANS) with 12 foot lanes and 8 foot shoulders. The Route 7 approaches are located on a 5° horizontal curve with approximately 400 ft corner sight distance. The Happy Valley Road approach is an inclined grade with limited sight distance. The posted speed limit is 50 mph on Route 7 and 40 mph on Exchange Street. The U.S. 7 North approach has "intersection ahead" and "trucks entering" posted warning signs.

Community Character

Family homes and nearby businesses are located close to this intersection. The nearby businesses are located in the Middlebury Industrial on Exchange Street, explaining the high percentage of truck traffic (8%) on this road and on Route 7. Speed, safety and high commuter traffic volumes affect the character of this intersection, the northern gateway of Middlebury. The Bridge School (grades 1-6) on Exchange Street is also located adjacent to the intersection. The intersection area experiences frequent joggers on Exchange Street.

Photograph 2: This photograph was taken looking south on Route 7 at the project intersection.

Sight Distance

The corner sight distance on Exchange Street is approximately 400 feet. Recommended guidelines (AASHTO) state that 550 feet is appropriate for a speed of 50 mph on the opposing travelway.

Accidents

VTRANS 5 year accident listings indicate one accident in 1997 and one in 1998.

Existing Utilities

The following utilities are known to exist in the project area:

- ◆ Gas
- ♦ Underground electric
- Sanitary sewer and water
- Overhead power, telephone, cable and a high-voltage transmission line crossing just north of the intersection

Right-of-Way

The U.S. 7 R.O.W. width is approximately 66 feet wide. The R.O.W. on both Exchange Street and Happy Valley's is 50 feet wide. Refer to the plans for a more approximate location of the boundary.

Environmental

There is an adjacent area to the northwest corner that contains a sensitive wetland.

Photograph 3: Turning left from Exchange Street north onto Route 7. The known wetland is located in the left corner of this photograph.

Traffic

Traffic Volumes

A 12-hour traffic count was performed by Dufresne-Henry on April 2, 2004 at the Exchange Street / Happy Valley / Route 7 intersection in Middlebury, Vermont. This count was converted to the year 2006 and 2016 Design Hour Volumes based on the daily variation of a VTrans continuous count station on Route 7. Using this projected data, the following tasks were performed with the results located in the subsequent sections:

- Morning and afternoon traffic data was compiled, and adjusted to obtain Design Hour Volumes (DHV) and Peak Hour Factors (PHF) for the construction (2006) and design years (2016).
- ◆ Trip generation volumes for the Industrial Park were conducted and added to the projected 2016 volumes using the ITE Trip Generation Manual and input from the Town of Middlebury.
- ♦ MUTCD signal warrants were reviewed for 12-hour traffic counts using TEAPAC software.
- Signalized intersection performance was analyzed using SYNCHRO software for AM and PM peak hours.
- Roundabout performance was analyzed using RODEL software for AM and PM peak hours.

Traffic Analysis Methodology

The traffic analysis process used for this report is the Highway Capacity Methodology. This practice is a way of comparing intersection congestion at certain times of the day. The level of service (LOS) characterizes the operating conditions of the facility in terms of traffic performance measures related to speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. The levels of service range from level of service A (least congested) to level of service F (most congested).

The following text and tables outline the general definitions of these levels of service for unsignalized, roundabout and signalized intersections.

Level of Service	General operating conditions
A	Free Flow
В	Reasonably Free Flow
C	Stable Flow
D	Approaching unstable flow
E	Unstable Flow
F	Forced or breakdown flow

	Unsignalized and Roundabout Level of Service Criteria (sec)					
Α	< OR =	10	seconds			
В	>	10	and	< OR =	15	
С	>	15	and	< OR =	25	
D	>	25	and	< OR =	35	
Е	>	35	and	< OR =	50	
F	>	50				

^{*}Roundabouts are similar to unsignalized intersections because drivers have higher expectations for lower delay and are less likely to appreciate waiting longer.

	Signalized Level of Service Criteria (sec)						
Α	< OR =	10	seconds				
В	>	10	and	< OR =	20		
С	>	20	and	< OR =	35		
D	>	35	and	< OR =	55		
Е	>	55	and	< OR =	80		
F	F > 80						

Signal Warrant Performance

Signal warrant analysis using TEAPAC software (MUTCD methodology) indicates that a traffic signal is warranted for this intersection in 2006 and in 2016. Reduced signal warrants assume that the intersection is in a built up area of an isolated community with a population of 10,000 or less or speed limit is greater than 40 mph.

Intersection	2006 Signal Warrants	2006 Reduced Signal Warrants	2016 Signal Warrants	2016 Reduced Signal Warrants
Exchange Street / Happy Valley / Route 7	No	Yes	Yes	Yes

Signalized Intersection Performance

An optimized intersection signalized analysis using SYNCHRO 6 indicates that overall intersection LOS will be A for 2006 AM & PM peak hours, A for the 2016 AM peak hour and C for the 2016 PM peak hour. Adding a left-turn lane on Exchange Street will result in an overall intersection LOS of A for 2006 and B for 2016 (see tables below). See attached documents for SYNCHRO analysis output.

Intersection: Exchange St/Happy Hollow/Route 7

Year 2006 Signalized Capacity Analysis - Level of Service (LOS) and sec of delay				
APPROACH (existing conditions)	AM	PM		
EB (Exchange St)				
Left, Right, & Thru	B (12)	B (12)		
WB (Happy Hollow)				
Left, Right, & Thru	B (14)	B (11)		
NB (Rte 7)				
Left, Right, & Thru	A (3)	A (7)		
SB (Rte 7)				
Left, Right, & Thru	A (4)	A (6)		
Overall Intersection & Sec Delay	A (4)	A (7)		

Year 2016 Signalized Capacity Analysis - Level of Service (LOS) and sec of delay				
APPROACH (without designated LTL)	AM	PM		
EB (Exchange St)				
Left, Right, & Thru	B (14)	D (35)		
WB (Happy Hollow)				
Left, Right, & Thru	B (17)	B (15)		
NB (Rte 7)				
Left, Right, & Thru	A (4)	C (23)		
SB (Rte 7)				
Left, Right, & Thru	A (10)	B (13)		
Overall Intersection & Sec Delay	A (8)	C (22)		

Year 2016 Signalized Capacity Analysis - Level of Service (LOS) and sec of delay				
APPROACH (with designated LTL)	AM	PM		
EB (Exchange St)				
Left	B (20)	C (27)		
Right, & Thru	A (8)	A (6)		
WB (Happy Hollow)				
Left, Right, & Thru	B (17)	B (15)		
NB (Rte 7)				
Left, Right, & Thru	A (4)	B (15)		
SB (Rte 7)				
Left, Right, & Thru	A (9)	A (9)		
Overall Intersection & Sec Delay	A (8)	B (14)		

Roundabout Intersection Performance

Roundabout capacity analysis using RODEL was performed for the 2016 AM and PM peak hours. The analysis indicates that a roundabout will provide a LOS of A for the 2016 AM & PM peak hours. See attached documents for RODEL analysis output.

Intersection: Exchange St/Happy Hollow/Route 7

Year 2016 Roundabout Capacity Analysis - Level of Service (LOS)					
RODEL AM RODEL PM					
Level of Service	А	Α			
Average Delay in seconds 7.9 7.5					
Approach and Average Queue NA - 2 cars SA - 2 cars					

Design Criteria

Design Criteria

The following page organizes the existing and proposed design criteria for this intersection.

Design Criteria

Functional Classification: Principal Arterial (019-3) Construction Year: 2006 Design Year: 2016

TRAFFIC AND REGULATORY DATA:

TWLT lane (Charles to Mary Hogan North)

2000 AADT: 14,600 (ATR Sta A179, just north of Mary Hogan South)

2015 AADT: +6% (Group II, based on previous 5 yrs)

Roundabout (Creek Road)

2000 AADT: 14,600 (ATR Sta A179)

2015 AADT: +6% (Group II)

6T 7%

Boulevard (Creek to Boardman)

2000 AADT: 13,200 (ATR Sta A011, just north of Boardman St.) 2015 AADT: +18% (Group III, based on previous 5 yrs at A018)

Turning Movement Volumes: use 1998 Corridor Management Study data (adjusted for design year)

Posted Speed Limit: 50 MPH - U.S. Route 7

40 MPH - west of U.S. Route 7 40 MPH - east of U.S. Route 7

Design Speed: same as posted speed (VSS § 3.3)

Clear Zone: 40 mph: 16 ft. (min.)

50 mph: 24 ft. (min.)

GEOMETRY:

existing	proposed	<u>reference</u>
varies	24 ft. (max)	VSS B71M
varies	40 ft. (max)	
	` ,	
existing	proposed	<u>reference</u>
42-44 ft.	same.	AASHTO 2000
12 ft.	12 ft.	
8-10 ft.	same	
none	yes	
none	none	
existing	proposed	<u>reference</u>
	same.	AASHTO 2000
12 ft.	12 ft.	
4 ft.	same	
none	none	
none	none	
existing	proposed	<u>reference</u>
	same.	AASHTO 2000
0 ft.	2 ft	
none	none	
none	none	
aviatina	nunnagad	nofononoo
		<u>reference</u> FHWA and Wallwork
		rnwa aliu waliwork
	` ′	
` ,		
	•	
none	yes	
	varies varies existing 42-44 ft. 12 ft. 8-10 ft. none none existing 42-44 ft. 12 ft. 4 ft. none none existing 42-44 ft. 12 ft. 4 ft. none none	varies 24 ft. (max) varies 40 ft. (max) existing proposed 42-44 ft. same. 12 ft. 12 ft. 8-10 ft. same none yes none none 12 ft. n/a 42-44 ft. varies 12 ft. n/a n/a <td< td=""></td<>

Interim Safety Measures

Comprehensive Interim Safety Measures

Making improvements to a corridor or intersection takes a number of years for the process of identifying funding, obtaining necessary properties, preparing engineering documents and performing construction. With this in mind, the following items are some interim safety measures that may be performed quicker than a larger project may take.

- ◆ Reduce speed limit in the area which would require a traffic study and traffic committee approval.
- Place a temporary Traffic Signal.
- Install a flashing blinking yellow and red light at the intersection.
- Add signage stating: caution, intersection ahead, and/or flashing beacon.
- Educate the community on what a roundabout is and how to use one.
- Add lighting to the intersection.
- Widen the road to accommodate a left turning lane on Exchange Street.
- ♦ Minimize the shrubbery and grade the south-west corner of the intersection to increase corner sight distance. The land between the road and the overhead utility lines (or existing R.O.W.) could be graded. Regular upkeep rimming the foliage would maintain a safe sight distance here.

Alternatives Evaluation

Three alternatives have been pursued by the Town of Middlebury and the Regional Planning Commission. The following alternatives are described in more detail in the following sections:

No Action Signal Alternative 1A Signal Alternative 1B Roundabout Alternative

No Action

The No Action Alternative is a decision that would end further action following this study for the Exchange Street / Happy Valley / Route 7 intersection improvement. This alternative leaves the intersection in its current condition and it assumes that any normal maintenance would continue.

Advantages

This alternative has no initial cost. This alternative has no construction or related traffic delays.

Disadvantages

This alternative does not satisfy the purpose and need statement for this project. It does nothing to improve the existing known concerns that affect motorists such as the increase in traffic volumes and delay, accommodation of a high percentage of trucks or improving the known sight deficiencies.

Signal Alternative 1A

Proposed improvements are as follows:

- ♦ Widen Exchange Street to include left turn lane
- ♦ Install actuated signal system
- ♦ Increase the corner sight distance on Exchange Street
- Widen and add a striped median on the Happy Valley Approach

Order of Magnitude of Cost

\$480,000 - This is the cost to improve the Exchange Street / Happy Valley Road / Route 7 intersection and add the stated traffic signals. A plan of this improvement is shown at the end of this section.

Advantages

- This alternative has least cost initially.
- ◆ There is less construction and associated disturbance required than a roundabout.
- A signalized intersection is a common installation in the state of Vermont so typical drivers will understand how it functions and how a traffic signal commonly works.
- Safety is improved due to the increased corner sight distance.

Disadvantages

- Periodic maintenance is required for the traffic signal.
- ♦ A signalized intersection has a higher number of conflicting traffic movements.
- A signalized intersection has lower potential capacity than the roundabout.
- ♦ Signalized intersections have the potential for drivers to run red lights. This is a serious hazard due to the openness of such a design.
- Vehicles can drive at higher speeds when the signal is on the green phase.

Signal Alternative 1B

- ♦ Install actuated signal system
- ♦ Increase the corner sight distance on Exchange Street
- ♦ Widen Exchange Street to include left turn lane
- ♦ Maintain existing approach at Happy Valley Road

Order of Magnitude of Cost

\$420,000 - This is the cost to improve the Exchange Street / Happy Valley Road / Route 7 intersection and add the stated traffic signals.

Advantages

- This alternative is cheaper initially.
- ◆ There is less construction and associated disturbance required than a roundabout.
- A signalized intersection is common practice in the state of Vermont so typical drivers will understand how it functions and how a traffic signal commonly works.
- Traffic on all approaches will be safer due to the geometry redesign to line up the east-west lanes. The corner sight distance will be improved on Exchange Street.

Disadvantages

- Periodic maintenance is required for the traffic signal.
- ◆ A signalized intersection has a higher number of conflicting traffic movements.
- A signalized intersection has lower potential capacity than the roundabout.
- Signalized intersections have the potential for drivers to run red lights. This is a serious hazard due to the openness of such a design.
- With this geometry, the east-west corridor lanes do not line up.
- Vehicles can drive at higher speeds when the signal is on the green phase.

Roundabout Alternative

- Install a conventional roundabout.
- Establish splitter islands a minimum of 200' on the Rt. 7 approaches.
- Address the need for a gateway to Middlebury.
- Improve delay to less than the existing condition.

The Roundabout Alternative is designed to slow cars substantially that are traveling north and south on Route 7. This alternative requires the post speed limit and approach speeds be reduced to 40 mph due to the changing characteristics and increase and anticipated development of the area. The estimated average speed through the intersection will be designed for 20 mph. This alternative will provide traffic calming.

Order of Magnitude of Cost

\$710,000 - This cost includes the improvement of the Happy Valley Road approach, approximate land acquisition costs, regrading of the Route 7 southern approach and of the roundabout intersection area.

Roundabout Background Information

A modern roundabout is a circular traffic intersection that allows for continuous movement of traffic through the intersection at low speeds. These low speeds result in greater efficiency and lower accident rates. Modern roundabouts include these general characteristics:

- Priority is given to the traffic already in the roundabout, as opposed to a traffic circle that gives priority to entering vehicles.
- ◆ The design of the roundabout lowers vehicle speeds to a maximum of 20 miles per hour.
- Vehicles entering a roundabout are required to yield to traffic already in the circle.
- ♦ All intersection legs are allowed to operate simultaneously, which increases the capacity of the intersection.
- ♦ By reducing the number and duration of stops, a roundabout intersection should reduce traffic noise levels, air pollution and vehicle fuel consumption.

Bicyclists traveling in the roundabout can easily merge into a roundabout lane at low speeds, which precludes cars from attempting to pass the bicycle.

Advantages

- Creates and provides a visual and practical traffic calming approach
- ♦ Landscaping can be incorporated into the central island of the roundabout and on the raised splitter islands. The resulting design creates a gateway into the Town of Middlebury.
- ♦ All intersection legs are allowed to operate simultaneously, which increases the capacity of the intersection.
- ◆ Extended splitter island treatments encourage drivers to slow down before reaching the roundabout, effectively achieved through a combination of geometric design and other design treatments.
- A roundabout has a high vehicle capacity and delay is minimized.
- ♦ Improves the pedestrian environment by providing splitter islands which act as pedestrian refuges. Pedestrians could cross one lane of traffic at a time as opposed to two or three lanes of traffic in a signalized condition.
- ♦ As a result of reducing the number and duration of stops, vehicles are more energy efficient, less air polluting, and reduce traffic noise levels, especially during non-peak hours.
- ◆ Fewer and less severe accidents are expected following installation. Typically 39% reduction of total crashes, 76% reduction of injury crashes and 89% reduction of fatal and incapacitating crashes (New York State DOT Roundabout Design Unit, Howard McCulloch, www.highwaysafety.org).

Disadvantages

- Roundabouts have a higher initial cost than a signalized intersection.
- ♦ There is low public acceptance before construction.
- Public education may be necessary for smooth transition and proper driver behavior. Many motorists may feel that US 7 has the right-of-way when the vehicle in the roundabout has the right of way.
- ◆ Traffic disruptions may be more significant during construction.
- Winter maintenance costs are higher than a conventional intersection.
- ♦ A 20 mph roundabout is not desirable in a 50 mph zone. This alternative requires reducing the posted speed on approaches to 40 mph.
- ◆ For VTrans acceptance, it may require the Class I section of US 7 be extended to include this intersection.
- It restricts left hand turns to driveway on US 7 south approach.

Figure 2: Signal Alternative 1A Design Plan.

Figure 3: Signal Alternative 1B Design Plan.

Figure 4: Roundabout Alternative Design Plan.

Evaluation Matrix

The future intersection improvement design process will encounter the need for various permits and applications as well as various funding sources. The matrix table, on the following page, summarizes the various impacts expected for the three alternatives.

EXCHANGE STREET / HAPPY VALLEY / ROUTE 7 INTERSECTION EVALUATION MATIX

		INTERSECTION			
		SIGNALIZED 1A	SIGNALIZED 1B	ROUNDABOUT	
Cost	~ Estimated Cost ~	\$480,000	\$420,000	\$710,000	
	Agricultural	None	None	None	
	Archaeological	Possible	Possible	Possible	
	Historic Structures, Sites and Districts	Possible	Possible	Possible	
	Hazardous Materials	None	None	None	
cts	Floodplain	None	None	None	
Impacts	Fish and Wildlife	No Sig. Change	No Sig. Change	No Sig. Change	
l H	Rare, Threatened and Endangered Species	No	No	No	
	Public Lands - Section 4(f)	No	No	No	
	LWCF - Section 6(f)	No	No	No	
	Noise	Same	Same	Same	
	Wetlands	Possible	Possible	Possible	
_	Right-of-way	Approx. 1/4 acre	Approx. ¼ acre	Approx. 1 acre	
na	Satisfies Local Concerns	No	No	Yes	
egic	Enhanced Community Character	No	No	Yes	
nd Re Issues	Economic Impacts	Same	Same	Same	
Local and Regional Issues	Conformance to Regional Transportation Plan	No	No	Yes	
	Provides Traffic Calming	No	No	Yes	
	Satisfies Purpose and Need Statement	Yes	Yes	Yes	
	VTrans Access Permit	Yes	Yes	Yes	
	Act 250	No	No	No	
	401 Water Quality	Yes	Yes	Yes	
its	404 COE Permit	Yes	Yes	Yes	
Permits	Stream Alteration	No	No	No	
Pe	Conditional Use Determination	Yes	Yes	Yes	
	Stormwater Discharge	Yes	Yes	Yes	
	Lakes and Ponds	No	No	No	
	SHPO (Historic and Archaeological)	No	No	No	
DO.	Typical Section	12' lanes, 12' turning lanes E/W approaches, 8' shoulders	12' lanes, 12' turning lane on west approach, 8' shoulders	12' lanes, 4' shoulders	
Li.	Traffic Safety	Enhanced	Enhanced	Enhanced	
Engineering	Bicycle/Pedestrian Access	Shoulders	Shoulders	Shoulders	
ngi	Curbs	No	No	Yes	
臣	Drainage Improvements	Yes	Yes	Yes	
	Utility	Poles are maintained	Poles are maintained	Poles are moved	
	Posted Speed	50	50	50	

Public Meetings

Public meetings in association with this study were held that focused on presenting alternatives and soliciting local concerns and comments from the community. These meetings were held in conjunction with the Middlebury Town Selectboard Meetings.

Alternatives Presentation - August 10, 2004

The Town of Middlebury presented an overview of the project history and outlined the purpose of the meeting. Dufresne-Henry provided details on three proposed alternatives for the Exchange Street / Happy Valley / Route 7 intersection. The meeting was attended by local residents, Selectboard members, the consultant and local government officials from the Town.

The purpose of the alternatives presentation was to gather public opinion and to identify their preferred alternative. People from the community, the Board and the Town stated their viewpoints, the vast majority in favor of the roundabout alternative. The Town Selectboard held two votes following the discussion on the alternatives. The first vote was 7-0, stating that the Selectboard identified a critical need of traffic control at this intersection. The second vote was 7-0, stating that the best solution for this need for traffic control is the roundabout alternative. Minutes from this meeting are included in the Appendix. Minutes from meetings prior to this with the Steering Committee are also located in the Appendix.

Public Meetings – September 29, 2004

The purpose of this meeting was to solicit comments on the Draft Scoping Study dated September 7, 2004. This meeting was noticed in the Addison Independent and held as an agenda item of a Middlebury Selectboard meeting. There was no public comment but concerns from the Agency were discussed and are included in Appendix E. Some of these comments are incorporated in the Final Report text. The board of selectmen passed a motion to approve the draft report.

Conclusions and Recommendations

Based on the evaluations of alternatives, public comments, and the endorsement from the Town of Middlebury Selectboard, the staff at the ACRPC and the Town of Middlebury recommend the Roundabout Intersection to move forward to the next phase of the project. It is recognized this Roundabout Alternative costs more and will likely have a longer development process, but provides a greater value in operation, aesthetics and safety.

Appendix Summary

Appendix A: Meeting Minutes

Project Kick-off Mtg. #1, March 15, 2004 Pre-Alternatives Meeting, July 9, 2004 Alternatives Presentation, August 10, 2004

Appendix B: Correspondence

Phone Log: Mark Smith with Dick Hosking, General Comments and Concerns, March 30, 2004

Appendix C: Traffic

Original Traffic Counts for AM and PM, April 2, 2004

VTrans Special Tube Count, Fax from Maureen Carr, 2004/01/05

Summary Sheet of Original Counts with Truck Percentages, June 2004

Original and Projected 2006, and 2016 Traffic Volumes, June 9, 2004

Industrial Park Expansion, Fax from Fred Dunnington, 5-13-04

Trip Generation of proposed development, from the ITE Trip Generation Handbook, 7th Generation

-Industrial Park, General Office Building and Free-Standing Discount Store

New Development Volume Distributions

Summary of Adjusted Peak Volumes with Added New Development, June 2004

Signal Warrant Output, June 2004

Signal Warrant Analysis Results

Synchro Signalization Analysis Results for 2006 (projected) and 2016 (projected with new development)

Rodel Roundabout Analysis Results for 2016 AM and PM (projected with new development)

Sight Distance Summary, July 29, 2004

Appendix D: Conceptual Cost Estimates

Assumptions for Conceptual Cost Estimate, August 10, 2004 Conceptual Cost Estimate Items of Work, August 10, 2004

Appendix E: Draft Scoping Study Comments

Middlebury Route 7 / Exchange St. Middlebury, VT

Meeting Minutes

Dufresne-Henry, Inc.

55 Green Mountain Drive, P.O. Box 2246 South Burlington, Vermont 05407 Tel: 802-864-0223 Fax: 802-864-0165

e-mail: firstinitial.lastname@dufresne-henry.com

Meeting: **Project Kick-off – Mtg #1**

Meeting Date: March 15, 2004

Project No.: **6330030**

Team Meeting					
Date	Start	End	Next Meeting	Next Time	Prepared by
03-15-04	2:00 PM	3:30 PM	TBD	TBD	Greg Edwards

Attended By		Copies To
Town:	Dan Werner, Fred Dunnington,	All attendees
	Don Keeler, Dean George	VTrans: Dick Hosking, DTA
ACRPC:	Garrett Dague	-
State:	Tamsen Benjamin	
DH:	Greg Edwards, Mark Smith	

If content contained within is not complete, accurate, or in context, please notify Dufresne-Henry of such discrepancy within ten (10) days of this record.

Item	Summary of Meeting			
Items D	ns Discussed			
1-1	Project History: US Route 7 in the project area was reconstructed and widened in approximately 1974 by the Vermont Agency of Transportation. Shortly thereafter the Middlebury Industrial Park extended Exchange Street and created the Exchange Street leg of the subject intersection. Over the last 30 years, the Industrial Park has expanded to 45 businesses, Fred Dunnington provided a list of these. The Industrial Park is subject to an Act 250 Permit, thus the plans for expanded use of the individual lots typically require and Act 250 review. In some instances, this has triggered the need for a traffic impact study. To date, significant intersection improvements have not been required due to these developments. The Town does have a concern that eventually the Industrial Park development will be curbed due to the needed improvements at the intersection. These improvements will be borne by this sole development or parcel. A copy of a traffic study associated with a parcel development was provided to Dufresne-Henry (DH). This intersection was also a part of a US Route 7 Corridor Study conducted by the Addison County Regional Planning Commission (ACRPC) in the late 1990's. DH has a copy of this study and will it will be reviewed and studied in the project development.			

Meeting Minutes
Dufresne-Henry, Inc.

Meeting: Get Start Meeting No. 1

Meeting Date: **03/15/04**

1-2	Existing Concerns: Noted concerns include the following:		
	 Limited corner site distance on the Exchange Street approach. Limited traffic gaps on US Route 7 during peak periods for traffic entering from the sidelines, particularly for the Exchange Street left turning traffic. Excessive speeds on US Route 7. The potential for severe accidents. Delays or queuing on Exchange Street at shift changes. Significant truck traffic associated with the Industrial Park. 		
1.0	7. Potential for significant development producing additional traffic.		
1-3	Existing and Projected Traffic Volumes: DH will conduct a 12 hour turning movement count at the intersection. These volumes will be adjusted using the States daily and seasonal adjustments. Background growth will be developed using adjacent VTrans continuous count stations to account for potential traffic growth due to Industrial Park development. Fred will provide the acreage and zone use for the undeveloped Industrial Park parcels. DH will include the trips generated from this development in the projected traffic volumes.		
1-4	Accidents History: DH will obtain an accident listing from VTrans. The Town will request an accident listing from the Middlebury Town Police and forward it to DH.		
1-5	Project Schedule: It is anticipated traffic counts will be completed by early April and the survey within the next three to four weeks pending weather conditions. Traffic Analysis completed by April 15 th and the signalized and unsignalized intersection and roundabout alternatives will be developed and distributed by May 1 st with a review meeting and alternatives presentation to follow.		
	Next meeting (#2) will be approximately in mid-May, TBD.		

Middlebury Rt. 7 - Exchange St Intersection Improvements Burlington, Vermont

Meeting Minutes

Dufresne-Henry, Inc. Meeting: Pre-Alternatives Meeting

55 Green Mountain Drive, P.O. Box 2246 Meeting Date: July 9, 2004 South Burlington, Vermont 05407 Project No.: 6330030

Tel: 802-864-0223 Fax: 802-864-0165 e-mail: firstinitial.lastname@dufresne-henry.com

Team Meeting					
Date	Start	End	Next Alt. Meeting with Selectboard	Next Time	Prepared by
7-9-04	9:00 a.m.	10:30 a.m.	August 10, 2004	7:00 p.m.	Stephanie Zehler

Attended By		Copies To	
Town:	Dan Werner, Fred Dunnington,	Attendees	
	Don Keeler, Bill Finger	Town: Dean George	
ACRPC:	Garrett Dague	State: Tamsen Benjamin	
VTrans District 5, DTA: Dick Hosking		-	
DH:	Greg Edwards, Mark Smith,		
Stephanie Zehler			

If content contained within is not complete, accurate, or in context, please notify Dufresne-Henry of such discrepancy within ten (10) days of this record.

Item	Summary of Meeting			
Items Discussed		Action/Response		
1	Review Traffic Analysis and Results.	DH will place a table with the LOS		
	Greg Edwards outlined the Purpose and Need	interpretation (delay ranges) and a		
	Statement regarding the project, discussed the	note of explanation into the report.		
	Level of Service (LOS) at the Exchange St-	Seconds of delay will be provided for		
	Route 7 Intersection and explained the signal	each approach and DH will consider		
	warrant analysis. Mark Smith explained how	providing the maximum capacity for		
	the LOS design criteria for a roundabout and a	each alternative.		
	signalized intersection are different.			

Item

2

3

n Improvements	Dufresne-Henry, Inc.				
y, Vermont	Meeting Date: 7-9-04				
Summary of Meeting					
Items Discussed	Action/Response				
Review Alternative Plans: Signalized	DH will create a third alternative plan				
Alternative. Greg Edwards described the	for the Alternatives meeting that takes				
elements for an effective signalized alternative	out the striped island on Happy Valley				
pointing out design considerations such as:	Road, thereby maintaining the existing				
a. Placing the signal mast poles outside	approach configuration. This third				
the clear zone to avoid using guardrail	plan would also allow the signal to be				
b. Potentially lowering the speed limit on	called on demand and add curbing to				
Route 7 to improve the stopping sight	minimize trucks driving off of the road				
distance in all directions	shoulders. DH will provide corner				
c. Refining lane geometry	sight distance line and estimate				
d. Adding new mast arm poles for signals	stopping sight distance for the Happy				
e. Explaining the drawing plan of full	Valley approach.				
build versus a minimum build scenario					
Review Alternative Plans: Roundabout	Shoulders need to be a minimum of 4'				
Alternative. Greg Edwards described the	wide for bicyclist use.				
elements and operation of the roundabout then					
noted the following considerations:	The design plan with short raised				
a. Since it is under yield control a major	islands may not slow or warn traffic				
advantage to the user and the	appropriately. The following are				
environment is continuous flow, no	adaptations to the islands that would				
stopping. Yield-only is particularly	help slow vehicles before they enter				
beneficial during off-peak periods.	the intersection:				
b. Roundabout initial cost is higher than	 longer raised islands 				
the signal option due to more roadway	 a painted island before the 				
reconstruction.	raised deflection islands				
c. Roundabout promotes less gas	leading to the roundabout				
consumption, reduces emissions and	 narrowing and/or deflecting 				
delay especially during off-peak	travel lanes				
periods.					
d. Roundabout slows traffic introducing	It is important to note that before				
an entrance to Middlebury urban	installing a roundabout, extensive				
compact.	roundabout education is required in a				

Meeting Minutes

	environment is continuous flow, no stopping. Yield-only is particularly beneficial during off-peak periods.	adaptations to the islands that would help slow vehicles before they enter the intersection:
b.	Roundabout initial cost is higher than the signal option due to more roadway reconstruction.	 longer raised islands a painted island before the raised deflection islands
c.	Roundabout promotes less gas consumption, reduces emissions and delay especially during off-peak periods.	leading to the roundabout narrowing and/or deflecting travel lanes
d.	Roundabout slows traffic introducing an entrance to Middlebury urban compact.	It is important to note that before installing a roundabout, extensive roundabout education is required in a new area. This may include a roundabout demonstration, handing out brochures on how drivers must operate, or showing a video of a roundabout in action on public access TV.

Item	Summary of Meeting			
	Items Discussed	Action/Response		
4	Determine specifics of Alternatives Presentation Meeting. The next meeting held will be the Alternatives Presentation. It was suggested that this meeting also be part of biweekly Selectboard Meeting on a Tuesday evening (so as to gain the Selectboard endorsement). Dates available are July 27th, Aug 10th, Aug 24th. August 10th was decided upon for the Alternatives Meeting.	DH will: Prep for meeting Edit current plans Create the minimized signal alternative Develop itemized cost estimate Provide an appropriate comparison of the signal and roundabout alternatives Prepare color plans for presentation Add 1973 slope rights to the Topo file Send plots to Fred for display in the town office hallway Give handouts to Fred for people in the town office Town will: Introduce the meeting on Aug. 10th Put meeting notices out: a public notice, an article, a date and time for the meeting on Aug 10th on the community calendar		
5	Discuss Interim Safety Measures. A list of suggested safety measures were discussed.	Edit the safety measures and present at the alternatives presentation meeting.		
A.	The following questions and comments were brought up or discussed throughout the meeting. Replies are shown to the right. Is there accident history in the area?	Yes, but this location is not designated as a High Accident Location (HAL).		
В.	What is the truck percentage at this intersection?	The truck percentage on the 3 major traveled legs is 8%. Happy Valley Road's truck percentage is 2%.		
C.	How long does typical signal equipment last before it needs replacement?	Dick stated that a signal should last approximately 20 years before it needs replacing.		

Item	Summary of Meeting									
	Items Discussed	Action/Response								
D.	How would the roundabout alternative be funded? The signalized alternative?	Roundabout alternative: 80%-10%-10% (Fed-State-Local)								
		Signal Alternative: 100% (Federal)								
Е.	What is the cost of each alternative?	The following costs are approximated estimates based on other projects that have been itemized: • Roundabout alternative: ~\$400,000 • Signal Alternative: ~\$300,000								
F.	What situation does the Roundabout intersection present for pedestrians and bicyclists?	There are very few pedestrians in this location. However, high school teams run up this road. It would be wise to find a way to accommodate pedestrians and bicyclists in the roundabout, perhaps with a shoulder on the other side of the curb. Vehicles are going slower as they maneuver through the roundabout.								
G.	Is there curbing for either Alternative?	Yes, there are curbs within the limits of the roundabout alternative. No, there are currently not curbs for the signal alternative. However, it was noted that curbing on the signal alternative would be beneficial to denote the shoulder for trucks.								
H.	Have the wetlands been delineated?	The wetlands have not been delineated. Note that a manmade drainage ditch is not a wetland and is not required to have a permit. Extending a culvert requires a permit. Impact areas over 3000 square feet require a VSCOE.								
I.	Do we need additional right-of-way for both of these Alternatives?	Yes, additional right-of-way is needed for both Alternatives for any physical changes to the intersection. The town may wish to obtain the triangular piece of property currently owned by a doctors' office to assist with reconstructing the intersection.								

Item	Summary of Meeting										
	Items Discussed	Action/Response									
J.	Could someone get a plow template (17' wide) and run this through the roundabout design to see the anticipated effect?	Yes, DH can refer to the Autoturn program for a plow template.									
K.	What is needed to warrant a flashing beacon?	Traffic accidents and traffic volumes.									
L.	Who will attend this Alternatives Meeting?	Consensus from people of which alternative is preferred will most likely come from: • School • Industrial Park • Happy Valley Road Residents									

Middlebury Route 7 / Exchange St. Middlebury, VT

Meeting Minutes

Dufresne-Henry, Inc.

55 Green Mountain Drive, P.O. Box 2246 South Burlington, Vermont 05407

Tel: 802-864-0223 Fax: 802-864-0165 e-mail: firstinitial.lastname@dufresne-henry.com

Meeting: Alternatives Presentation

Meeting Date: August 10, 2004

Project No.: **6330030**

	Alternatives Presentation Meeting Summary										
Date	Start	End	Next Meeting	Next Time	Prepared by						
8-10-04	7:30 PM	8:15 PM	TBD	TBD	Stephanie Zehler						

Attended B	dy.	Copies To						
Middlebur	y Town Selectboard	Attendees on the committee.						
Members of	of the Public							
Town:	Dan Werner, Fred Dunnington,	VTrans:	Dick Hosking, DTA					
	Don Keeler, Dean George		-					
ACRPC:	Garrett Dague	State:	Tamsen Benjamin					
DH:	Greg Edwards, Stephanie Zehler		· ·					

If content contained within is not complete, accurate, or in context, please notify Dufresne-Henry of such discrepancy within ten (10) days of this record.

Item	Summary of Meeting
Items [Discussed
1-1	Project History: US Route 7 in the project area was reconstructed and widened in approximately 1974 by the Vermont Agency of Transportation. Shortly thereafter the Middlebury Industrial Park extended Exchange Street and created the Exchange Street leg of the subject intersection. Over the last 30 years, businesses on Exchange Street have grown in number to over 45. The Town does have a concern that eventually the Industrial Park and other Exchange St. business development will be curbed due to the level of service at the Rt. 7 intersection. It is not fair, nor practicable for needed improvements to be borne by the next individual business that is expanding. Dufresne-Henry was hired by the RPC to review this intersection and provide intersection improvement alternatives for the Town to discuss with the State.

Meeting Minutes
Dufresne-Henry, Inc.

Meeting: Alternatives Presentation

Meeting Date: **8-10-04**

1-2	PURPOSE:
	Improve the Safety and Operation of the Intersection and Enhance the "Gateway to Middlebury."
	NEEDS:
	♦ Improve sight distance and safety for turning vehicles.
	♦ Reduce delay on Exchange Street approach.
	◆ Accommodate growth of Middlebury and Exchange Street.
	♦ Provide gateway to Middlebury.
1-3	Presentation of Alternative 1A and 1B: Signalized
	♦ Install actuated signal system
	♦ Increase corner sight distance
	♦ Add turn lane on Exchange Street approach
1-4	Presentation of Alternative 2: Roundabout
	◆ Construct Roundabout with curbed splitter islands
	◆ Improve sight distance
	♦ Widening for roundabout
	♦ Extend existing culvert
1-5	Project Needs:
	♦ Reduce Delay
	♦ Increase Corner Sight Distance
	♦ Safety for turning vehicles
	♦ Enhance gateway
	♦ Accommodate traffic growth
1-6	Impacts:
	♦ Adjacent Property
	♦ Right-of-Way
	• Environmental
	♦ Economic
	• Community character
	• Regional Plans
	◆ Utilities

Meeting Minutes

Dufresne-Henry, Inc.

Meeting: Alternatives Presentation

Meeting Date: **8-10-04**

Meeting Minutes

Dufresne-Henry, Inc.

Meeting: Alternatives Presentation

Meeting Date: 8-10-04

1-9 **Don Keeler -** There are lots of joggers in this area that come up from Exchange Street.

Bill Perkins - Probably 20 joggers a day.

Dean George - With speeds of 20mph, it is easier to deal with pedestrians.

Fred Dunnington - With the roundabout alternative, one only has to cross one travel lane at a time. With the signal alternative, pedestrians have to cross two or three travel lanes to cross RT 7.

Charlotte Tate - The roundabout alternative gives me a warm feeling to have this type of entryway with so much green space. Someone could maintain that center space with nice plantings and really make a nice entrance to the Town.

Don Keeler – We do already have slope rights on the corners. (Other - But we will still need to acquire property rights for either alternative.)

Fred Dunnington – If AOT provided funding more readily for signals and the preferred roundabout was only to be funded at a more distant future date, would the SelectBoard wait? What does the Selectboard see as the urgency of this Intersection?

John Tenny – The Town should start with the property acquisition.

Fred Dunnigton - The state property acquisition process should be used in this matter. But, yes, we can start talking with property owners now.

John Tenny - See the needs of the project and talk with property owners.

Don Keeler - We know the signal is going to work. The roundabout is nice. But look at the funding associated with this. AOT states that roundabouts can cost much more than a signalized intersection.

Peg Martin - Roundabouts work very well in other spots such as Montpelier and Brattleboro. She prefers to push for the roundabout. The intersection is never going to change if you put a signal there.

Greg Edwards - AOT has typically supported roundabouts in urban areas with slower speeds such as Montpelier, Manchester, Harford and Middlebury. This area around Exchange Street-Route 7 is going to be more developed in 20 years. Roundabouts in higher speed locations is an issue and requires careful consideration.

Meeting Minutes

Dufresne-Henry, Inc.

Meeting: Alternatives Presentation

Meeting Date: **8-10-04**

1-9 **Dean George -** There are people at the AOT who support roundabouts, not everyone in AOT has reservations with them there.

Public comment- Why is this particular spot been chosen for a roundabout and not the southern gateway?

John Tenny - The funding for the southern project is not certain. At the Exchange Street-Route 7 Intersection, the traffic numbers are higher, the intersection is already warranted and there are more businesses moving in. There is growing concern that the industrial park would not be able to grow and/or would halt due to this intersection not being adequate level of service.. In due time, the Town may lose the opportunity to choose a traffic control device at this location due to urgency.

Fred Dunnington – What is the urgency of this project to the Town Selectboard versus the southern roundabouts?

Dean George - They are separate issues.

Peg Martin - The southern roundabouts are a much more expensive project than this intersection. We can make this work in a discreet manner versus changing a whole area.

Fred Dunnington - In reality, if the roundabout alternative takes a few more years than a signalized intersection, who will support this? Peg, John, Bill P. indicated they would.

Don Keeler - This is a dangerous intersection, it is a known problem that we need to do something soon.

Peg Martin - We can increase the visibility at this location for sure now.

Bill Perkins - Driving this intersection 4-10x a day, there is a lot of impatience of drivers, as the Chief said earlier. One needs to wait for the proper break in traffic before you go across. We should clear the trees now.

John Tenny - The proper way to proceed is perhaps with these two actions:

1) The Town Selectboard has identified a critical need of traffic control at this intersection.

(voted 7-0 in favor)

- 2) The best solution for this need for traffic control is the roundabout alternative. (voted 7-0 in favor)
- 1-10 Dufresne-Henry will provide the DRAFT Report in the fall of 2004.

Dufresne-Henry, Inc.

P.O. Box 2246, 1025 Airport Drive South Burlington, VT 05407 Telephone: (802) 864-0223

Fax: (802) 864-0165

TELEPHONE CONVERSATION LOG

By: Mark Smith Project No: 6330030

Date: 3-30-04 Time: 9 am

Individual: Dick Hosking Title: VTrans District 5 DTA

Phone No.: 655-1580

Subject: general comments and concerns for possible intersection improvements at Exchange St.

and Rte. 7 in Middlebury

Items Discussed:

Maintainability in winter:

- -area of Rte 7 is plowed by a tamdem truck (needs 17 ft. width where curbed both sides)
- -small roundabouts are too constrictive for these vehicles
- -no left-hand plows for pushing snow to middle of a roundabout are available to DTA
- -windrow of snow will be left across Rte 7 approaches to a roundabout
- -cleanup after storm requires different equipment than what's available to District
- -account for snow melt from center island of roundabout don't want freezing across road
- -may need cooperation from Town for plowing

Need to control speed on Rte 7:

- -possibly narrow shoulder on Rte 7 for traffic calming
- -roundabout design speed may be 25 mph, but Rte 7 will still dominate making it hard to get out from Exchange St.

Traffic:

- -problem is only in peak hours
- -Rte 7 is part of the state Truck Network must plan for 53 foot trailers (WB67)

Sight Distance:

- -no matter what: remove the mound to the south of intersection (west side)
- -for roundabout alternative must be able to see features clearly from approaches

Comments or Actions Required:

Find a turning template for a tamdem truck with a plow, if possible.

Appendix C - Traffic

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

Rt 7 North Approach		2	18	34		3	19	35		4	20	36			, ,		
		R	ight onto Ex	change St		Stra	aight sout	h on Rt 7		Left o	nto Happ	y Valley F	Rd	-			
Observer	15 min period begins	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Truck	Tractor Trailers	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
D. Draper	6:00	15	0	2		24	5	3		0	0	0		6:00	5	5	<u> </u>
	6:15	3	2	0		30	0	2		0	0	0		6:15	2	2	
	6:30	11	0	0		55	3	3		1	0	0		6:30	3	3	
	6:45	18	11	0		69	6	1		1	0	0		6:45	7	1	96
	7:00	14	1	1		59	2	1		0	0	0		7:00	3	2	
	7:15	23	1	0		69	4	0		1	0	0		7:15	5	0	
	7:30	21	0	1		101	0	4		0	0	0		7:30	0	5	
	7:45	30	1	0		137	2	2		1	0	0		7:45	3	2	
	8:00	33	1	0		98	3	2		1	0	0		8:00	4	2	
	8:15	34	0	1		113	8	1		0	0	0		8:15	8	2	·
	8:30	16	2	1		88	2	2		0	0	0		8:30	4	3	
	8:45	18 17		0		81	3	2		1	0	0		8:45	4	2	<u> </u>
	9:00 9:15	17	<u>0</u>	0 2		64 75	6	2		'	0	0		9:00 9:15	6	2	+
	9:15	16	2	1		75 79	6	4		0	0	0				6	100
	9:30	13	4	0		79	2	5		1	1	0		9:30 9:45	8 7	5	1
	10:00	15	0	3		63	6	1		1	1	0		10:00	7	3	90
	10:15	15	0	2		70	7	4		1	0	0		10:00	7	6	+
	10:30	9	2	0		60	6	0		0	0	0		10:30	8		
	10:45	13	4	0		66	9	3		0	0	0		10:45	13		1
	11:00	11	2	1		63	5	2		0	0	0		11:00	7	3	
	11:15	10	2	0		56	4	2		1	0	0		11:15	6		
	11:30	18	2	2		67	8	2		2	0	0		11:30	10		+
	11:45	15	3	0		72	5	0		3	0	0		11:45	8	0	1
								· !				+ <u> </u>		TOTAL	139	-	

Trucks	5.89	%
Trailer Trucks	2.75	%
Total Trucks	8.64	%

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

Happy Valley

Approach		6	22	38		7	23	39		. 8	24	40		_			
			Right onto Rt	7, north		Straigl	ht on Exc	hange, w	est	Lef	Left onto Rt 7, south						
Observer	15 min period begins	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	Passenger cars	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
). Draper	6:00	0	0	0		1	0	0		0	0	0		6:00	0	() 1
	6:15	0	0	0		1	0	0		0	0	0		6:15	0	(1
	6:30	1	0	0		2	0	0		0	0	0		6:30	0	(3
	6:45	0	0	0		2	0	0		1	0	0		6:45	0	(3
	7:00	2	0	0		1	0	0		0	0	0		7:00	0	(3
	7:15	1	0	0		0	0	0		0	0	0		7:15	0	(1
	7:30	1	0	0		3	0	0		1	0	0		7:30	0	(5
	7:45	0	0	0		3	0	0		0	0	0		7:45	0	(3
	8:00	0	0	0		0	0	0		1	0	0		8:00	0	(1
	8:15	2	0	0		2	0	0		1	0	0		8:15	0	(5
	8:30	0	0	0		1	0	0		2	0	0		8:30	0	(3
	8:45	1	0	0		2	0	0		2	0	0		8:45	0	(5
	9:00	0	0	0		1	0	0		0	0	0		9:00	0	(1
	9:15	1	0	0		2	0	0		0	0	0		9:15	0	(3
	9:30	1	0	0		1	0	0		1	0	0		9:30	0	(3
	9:45	0	0	0		1	0	0		2	0	0		9:45	0	(3
	10:00	1	0	0		1	0	0		0	0	0		10:00	0	(2
	10:15	1	0	0		1	1	0		0	0	0		10:15	1	(3
	10:30	0	0	0		1	0	0		2	0	0		10:30	0	(3
	10:45	0	0	0		0	0	0		0	0	0		10:45	0	(0
	11:00	0	0	0		2	0	0		0	0	0		11:00	0	(2
<u> </u>	11:15	1	0	0		0	0	0		1	0	0		11:15	0	(2
	11:30	1	0	0		3	0	0		0	0	0		11:30	0	(4
	11:45	1	0	0		1	0	0		1	0	0		11:45	0	(3
	٠	-		•			•	9	•				-	TOTAL	1	(63

Trucks	1.59	%
Trailer Trucks	0.00	%
Total Trucks	1.59	%

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

Rt 7 South Approac	h	10	26	42		11	27	43		12	28	44		_	, ,		
			Right onto Ha	ippy, east		Stra	aight on R	t 7, north		Left o	nto Exch	ange, we	st				
Observer	15 min period begins	Passenger	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	Passenger cars	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
D. Draper	6:00	0	0	0		29	1	2		0	0	0		6:00	1	2	
	6:15	0	0	0		32	3	2		2	0	0		6:15	3	2	39
	6:30	1	0	0		61	0	0		3	0	1		6:30	0	1	66
	6:45	0	0	0		38	2	0		6	2	0		6:45	4	0	48
	7:00	0	0	0		56	3	1		1	0	1		7:00	3	2	62
	7:15	0	0	0		63	3	2		6	0	0		7:15	3	2	74
	7:30	0	0	0		66	3	2		2	0	0		7:30	3	2	73
	7:45	1	1	0		64	2	0		5	0	0		7:45	3	0	73
	8:00	0	1	0		64	2	1		3	3	0		8:00	6	1	74
	8:15	1	0	0		58	3	2		8	3	0		8:15	6	2	
	8:30	1	0	0		74	6	2		8	0	0		8:30	6	2	91
	8:45	0	0	0		52	4	2		9	0	0		8:45	4	2	67
	9:00	0	0	0		44	5	0		3	2	0		9:00	7	0	54
	9:15	0	0	0		56	7	4		2	1	1		9:15	8	5	71
	9:30	1	0	0		61	4	5		0	1	1		9:30	5	6	73
	9:45	0	0	0		61	3	4		3	0	1		9:45	3	5	72
	10:00	0	0	0		75	2	2		4	0	1		10:00	2	3	84
	10:15	0	0	0		57	5	3		3	0	0		10:15	5	3	68
·	10:30	1	1	0		55	3	0		1	1	1		10:30	5	1	63
·	10:45	0	0	0		80	9	4		1	1	0		10:45	10	4	95
	11:00	1	0	0		67	4	1		0	0	1		11:00	4	2	74
	11:15	0	0	0		79	9	4		2	0	1		11:15	9	5	95
	11:30	2	0	0		57	2	2		6	0	0		11:30	2	2	69
	11:45	2	0	0		54	3	5		2	0	0		11:45	3	5	66
				-	-									TOTAL	105	59	1658

Trucks	6.33	%
Trailer Trucks	3.56	%
Total Trucks	9.89	%

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

Exchange Street

Approach		14	30	46		15	31	47		16	32	48		_			
			Right onto R	t 7, north		Strai	ight on Ha	appy, eas	t	Lef	t onto Rt	7, north					
Observer	15 min period begins	Passenger	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	Passenger cars	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
. Draper	6:00	0	0	0		0	0	0		2	1	0		6:00	1	0	3
	6:15	0	3	1		0	0	0		4	0	0		6:15	3	1	8
	6:30	1	1	0		1	0	0		1	0	0		6:30	1	0	4
	6:45	1	2	0		2	0	0		0	1	0		6:45	3	0	
	7:00	0	0	0		0	0	0		4	0	0		7:00	0	0	4
	7:15	1	0	1		0	0	0		2	2	1		7:15	2	2	7
	7:30	2	0	0		0	0	0		5	1	0		7:30	1	0	8
	7:45	0	0	0		1	0	0		4	0	0		7:45	0	0	5
	8:00	5	0	0		1	0	0		11	1	0		8:00	1	0	
	8:15	9	0	1		0	0	0		6	1	0		8:15	1	1	17
	8:30	2	0	2		0	0	0		8	1	3		8:30	1	5	16
	8:45	3	0	0		0	0	0		13	1	1		8:45	1	1	18
	9:00	3	0	0		0	0	0		7	1	1	_	9:00	1	1	12
	9:15	3	0	1		0	0	0		12	0	1		9:15	0	2	
	9:30	2	0	0		0	0	0		9	1	0		9:30	1	0	·-
	9:45	4	0	0		1	0	0		13	0	2		9:45	0	2	20
	10:00	2	0	1	1	0	0	0		15	5	1		10:00	5	2	24
	10:15	3	0	0		1	0	0		13	1	1		10:15	1	1	19
	10:30	4	1	2		0	0	0		20	2	1		10:30	3	3	30
	10:45	4	1	0		1	0	0		10	2	0		10:45	3	0	
	11:00	0	0	0		0	0	0		10	2	1		11:00	2	1	13
	11:15	3	2	0		1	0	0		11	0	1		11:15	2	1	18
	11:30	5	0	2		1	0	0		11	3	1		11:30	3	3	23
	11:45	4	1	0	ļ	2	0	0		10	0	2		11:45	1	2	
														TOTAL	37	28	339

Trucks	10.91	%
Trailer Trucks	8.26	%
Total Trucks	19.17	%

SUMMARY SHEET

AM	# Cars	Truck	ractor Trai	al Vehic	cles
Page 1	2156	139	65	2360	
Page 2	62	1	0	63	
Page 3	1494	105	59	1658	
Page 4	274	37	28	339	

4420

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

															,		
Rt 7 North Approach		2	18	34		3	19	35		4	20	36					
			Right onto I	Exchange St		Stra	ight south on Rt 7	7		Left or	nto Happ	y Valley R	.d				
Observer	15 min period begins	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Truck	Tractor Trailers	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
/l. Draper	12:00	16	6	2		78	5	0		0	0	0		6:00	11	2	107
	12:15	15	2	1		74	5	3		2	0	0		6:15	7	4	102
	12:30	14	1	2		57	5	2		0	0	0		6:30	6	4	81
	12:45	11	0	3		66	4	2		1	0	0		6:45	4	5	87
	13:00	5	1	1		80	2	2		0	0	0		7:00	3	3	91
	13:15	9	0	1		75	5	1		1	0	0		7:15	5	2	92
	13:30	9	1	4		83	2	6		0	0	0		7:30	3	10	105
	13:45	12	0	1		82	5	1		0	0	0		7:45	5	2	101
	14:00	8	2	4		70	2	1		0	0	0		8:00	4	5	87
	14:15	18	0	0		75	1	1		2	0	0		8:15	1	1	97
	14:30	7	0	0		92	4	1		0	0	0		8:30	4	1	104
	14:45	11	0	0		79	5	2		0	0	0		8:45	5	2	97
	15:00	9	3	0		73	2	0		0	0	0		9:00	5	0	87
	15:15	14	0	0		74	3	0		2	0	0		9:15	3	0	93
	15:30	12	0	1		88	1	3		0	0	0		9:30	1	4	105
	15:45	14	2	1		103	3	1		2	0	0		9:45	5	2	126
	16:00	15	1	0		88	0	2		1	0	0		10:00	1	2	107
	16:15	14	0	1		84	2	0		0	0	0		10:15	2	1	101
	16:30	16	0	1		74	0	1		0	0	0		10:30	0	2	92
	16:45	12	1	0		82	1	0		0	0	0		10:45	2	0	96
	17:00	11	0	0		84	1	2		1	0	0		11:00	1	2	99
	17:15	6	2	0		85	1	0		0	0	0		11:15	3	0	94
	17:30	5	0	1		85	2	2		0	0	0		11:30	2	3	95
17	17:45	4	0	0		96	2	0		0	0	0		11:45	2	0	102
														TOTAL	85	57	2348

Trucks	3.62	%
Trailer Trucks	2.43	%
Total Trucks	6.05	%

April 2, 2004 Weather: AM- PM-

VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

Happy Valley

Approach		6	22	38		7	23	39		8	24	40		_			
			Right onto	Rt 7, north		Straigh	nt on Exchange, we	est		Lef	t onto Rt	7, south		=			
Observer	15 min period begins	Passenger	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	Passenger cars	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
M. Draper	12:00	0	0	0		2	0	0		0	0	0		6:00	0	(0 2
	12:15	0	0	0		2	0	0		1	0	0		6:15	0	(0 3
	12:30	0	0	0		0	0	0		0	0	0		6:30	0	(0 0
	12:45	2	0	0		1	0	0		2	0	0		6:45	0	(5 PE
	13:00	0	0	0		2	0	0		0	0	0		7:00	0	(2 PE
	13:15	0	0	0		1	0	0		0	0	0		7:15	0	(1 PE
	13:30	1	0	0		2	0	0		1	0	0		7:30	0	(0 4 PE
	13:45	0	0	0		1	1	0		1	0	0		7:45	1	(3 12
	14:00	0	0	0		0	0	0		0	0	0		8:00	0	(0 0
	14:15	0	0	0		1	0	0		0	0	0		8:15	0	(0 1
	14:30	0	0	0		0	0	0		1	0	0		8:30	0	(0 1
	14:45	1	0	0		0	0	0		0	0	0		8:45	0	(0 1
	15:00	0	0	0		1	0	0		1	0	0		9:00	0	(2 PE/
	15:15	0	0	0		4	0	0		1	0	0		9:15	0	(5 PE/
	15:30	3	0	0		2	0	0		0	0	0		9:30	0	(5 PE/
	15:45	2	0	0		0	0	0		0	0	0		9:45	0	(2 PE/
	16:00	0	0	0		0	0	0		1	0	0		10:00	0	(0 1 14
	16:15	1	0	0		0	0	0		0	0	0		10:15	0	(0 1
	16:30	1	0	0		0	0	0		0	0	0		10:30	0	(0 1
	16:45	0	0	0		1	0	0		0	0	0		10:45	0	(0 1
	17:00	0	0	0		1	0	0		0	0	0		11:00	0	(0 1
	17:15	2	0	0		5	0	0		0	0	0		11:15	0	(7
	17:30	1	0	0		1	0	0		0	0	0		11:30	0	(0 2
	17:45	0	0	0		2	0	0		0	0	0		11:45	0	(0 2
				1						,				TOTAL	1		0 53

Trucks	1.89	%
Trailer Trucks	0.00	%
Total Trucks	1.89	%

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

															,		
Rt 7 South Approach		10	26	42		11	27	43		12	28	44		_			
			Right onto	Happy, east		Stra	aight on Rt 7, north			Left o	nto Exch	ange, wes	st	_			
	15 min period begins	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	Passenger cars	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes
M. Draper	12:00	1	0	0		75	7	3		4	0	1		6:00	7	4	91
	12:15	2	0	0		69	9	0		6	0	0		6:15	9	0	86
	12:30	0	0	0		74	6	3		2	0	0		6:30	6	3	85
	12:45	1	0	0		65	6	1		4	1	0		6:45	7	1	78
	13:00	1	0	0		72	5	1		2	0	0		7:00	5	1	81
	13:15	0	0	0		58	4	1		4	2	0		7:15	6	1	69
	13:30	0	0	0		78	5	1		3	0	0		7:30	5	1	87
	13:45	0	0	0		72	5	2		1	2	0		7:45	7	2	82
	14:00	1	0	0		83	5	1		4	0	1		8:00	5	2	95
	14:15	0	0	0		87	6	3		4	0	0		8:15	6	3	100
	14:30	1	0	0		102	2	5		4	0	0		8:30	2	5	114
	14:45	1	0	0		89	2	1		4	0	1		8:45	2	2	98
	15:00	1	0	0		105	2	1		4	1	0		9:00	3	1	114
	15:15	0	0	0		123	3	1		6	0	0		9:15	3	1	133
	15:30	0	0	0		132	4	3		3	0	0		9:30	4	3	142
	15:45	0	0	0		122	5	0		3	0	1		9:45	5	1	131
	16:00	0	0	0		104	2	2		3	1	0		10:00	3	2	112
	16:15	0	0	0		98	4	1		1	3	0		10:15	7	1	107
	16:30	0	0	0		113	2	1		1	0	0		10:30	2	1	117
	16:45	1	0	0		103	1	0		4	0	0		10:45	1	0	109
	17:00	2	0	0		138	2	0		1	0	0		11:00	2	0	143
	17:15	0	0	0		100	4	2		0	0	0		11:15	4	2	106
17:	17:30	0	0	0		96	1	1		1	0	0		11:30	1	1	99
	17:45	0	0	0		82	0	0		0	0	0		11:45	0	0	82
														TOTAL	102	38	2461

Trucks	4.14	%
Trailer Trucks	1.54	%
Total Trucks	5.69	%

April 2, 2004 Weather: AM- PM- VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd Middlebury, VT April 2, 2004

Exchange Street Approach Right onto Rt 7, north Straight on Happy, east Left onto Rt 7, north 15 min Trailer Total per 15 period Passenger Tractor Passenger Tractor period Trucks Trucks minutes Truck Trailer Trailer Observer begins cars Bus Passenger cars Tractor Trailers Truck Bus cars Truck Bus begins M. Draper 12:00 6:00 12:15 6:15 12:30 6:30 12:45 3:45 13:00 7:00 13:15 7:15 13:30 7:30 13:45 7:45 48 PEAK 14:00 8:00 14:15 8:15 30 PEAK 14:30 8:30 26 PEAK 24 PEAK 14:45 8:45 15:00 9:00 31 128 15:15 9:15 15:30 9:30 15:45 9:45 16:00 10:00 16:15 10:15 38 PEAK 16:30 10:30 27 PEAK 16:45 10:45 17:00 11:00 44 PEAK 31 PEAK 17:15 11:15 17:30 11:30 17 140 17:45 11:45

Trucks	4.85	%
Trailer Trucks	3.85	%
Total Trucks	8.70	%

TOTAL

SUMMARY SHEET

PM	# Cars	# Trucks	# Tractor Trailers	Total Vehicles
Page 1	2206	85	57	2348
Page 2	52	1	0	53
Page 3	2321	102	38	2461
Page 4	640	34	27	701

5563

PM	# Cars	# Trucks	# Tractor Trailers	Total Vehicles
Page 1	2206	85	57	2348
Page 2	52	1	0	53
Page 3	2321	102	38	2461
Page 4	640	34	27	701
			•	5563

Trucks	3.99	%
Trailer Trucks	2.19	%
Total Trucks	6.18	%

АМ	# Cars	# Trucks	# Tractor Trailers	Total Vehicles
Page 1	2156	139	65	2360
Page 2	62	1	0	63
Page 3	1494	105	59	1658
Page 4	274	37	28	339
				4420

Trucks 6.38 %
Trailer Trucks 3.44 %
Total Trucks 9.82 %

	# Cars	# Trucks	# Tractor Trailers	Total Vehicles
TOTAL	9205	504	274	9983

Trucks	5.05	%
Trailer Trucks	2.74	%
Total Trucks	7.79	%

6330030. SH GHE JBL

L MZS

State of Vermont
Agency of Transportation
National Life Building
Drawer 33
Montpelier, VT
05633-5001

VTrans Working to Get You Ther

PROGRAM DEVELOPMENT DIVISION FAX COVER SHEET

(802) 828-2334 FAX NUMBER)

TO: Jon Lenwohl DH
FROM: Maureen Carr
DATE: 1/5/04
SUBJECT: Middlebury Traffic Counts
TOTAL PAGES: 4 (including this sheet)
COMMENTS: Jon - I am faxing you three Automatic Traffic Recorder counts done in the UST/Exchangest/ Happy Valley Rd area. X we have not done a turning movement count at that intersection
Give me a call at 828-3091, or e-mail at moureen. Carr @ state.vt. us if you have guestions.
Thanks

www.aot.state.vt.us
Telecommunications Relay Service 1-800-253-0191

Vermont is an Equal Opportunity Employer

Run Date: 2004/01/05

Vermont Agency of Transportation Technical Services Division Special Count - Volume Traffic Research Unit

Location: Middlebury: Exchange St 1.0 mi Nof ElmSt URBAN:LOCAL SYSTEM Functional Class: Site ID: S6A048

Count Type: VOLUME Counter Type: Tube Town: Middlebury

Final AADT: 2100 Route No: NONE

Preliminary AADT: 2100 Poll Group: Urban Poll Site: Average Peak Volume: AM Peak***: 258 PM Peak**; Weekend All Days** \$ Weekday Saf * Fri Thu * Wed A Tue* Mon A Sun * Average Volume: Hours Averaged:

* Averaging by hour(0-23), then by day of week (Sun-Sat)
** Adjusted Average Day equals 5/7 * Avg Weekday + 2/7 * Avg Weekend Day
*** AM PM Peak Average Volumes are only from the weekday days

Run Date: 2004/01/05

Vermont Agency of Transportation Technical Services Division Special Count - Volume Traffic Research Unit

Town: Middlebury Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: US7: 0.35 mi S of TH73/TH9 HAN'Y URLEY RD Site ID: S6A012

2002/09/20 Fri	74	40	8	48 47	47 1	128 3	333 6	640 8	824 69	9 059	652 86		,	10 848							382		160	11800	0.85	98.0	9687
2002/09/21 Saf	98	42	33	34	38	67 1	135 2	282 4	419 5			780 85	859 78	788 7.1	118	8 753	3 74€	627	481		312	235	140	9865	1.08	0.96	10227
2002/09/22 Sun	105	84	32	18	77	88	82 1	157 2	274 4	434 4				617 643						244	177	188	28	7584	1.35	0.96	9825
2002/09/23 Mon	88	R	13	23	45 ((41 8	37.1 8	814 8	836 8						12									8013	0.98	0.96	5536
Average:	67	67 33	22	30	40 112 287	12 2		519 712		603 56	587 68	654 66	689 B¢	659 733	13 8f5	5 854	828	909	429	333	262	169	104				
		Sun	MFO	, ,	Sun Mon' Tue Wed*	Wed	1	Thu *	Fri		Sat *	Weekday	lay V	Weekend All Days**	d All	Days.		Average Peak Volume:	eak Vo	ame:	4	relimin	ary AA	Preliminary AADT: 9700			
Hours Averaged:	jed:	24		24	24	,,	Z	24	24	**	24	-	120	4	82	168		AM Peak***	*: 863	~	п.	Poll Site:					
Average Volume:	me:	7584	10219		10389	10549		10702	11800		9865	107	10732	8725	D	10158		PM Peak***:			ш	Poll Group:		Urban			

24 27 29 29

2002/09/18 Wed 2002/09/17 Tue

2002/09/19 Thu

2002/09/16 Mon Date

Hours Averaged: Average Volume:

96.0 96.0 96.0 96.0

0.95 0.95 0.84 0.91

MADTACF

Final AADT: 9700

Route No: US7

Daily

* Averaging by hour(0-23), then by day of week (Sun-Sat)
** Adjusted Average Day equals 5/7 * Avg Weekend Day
*** AM_PM Peak Average Volumes are only from the weekday days

Run Date: 2004/01/05

Vermont Agency of Transportation

Technical Services Division Traffic Research Unif

Special Count - Volume

UST Between Happy Valley RD & Nawthowen TL

Site ID: S6A105

Final AADT: 10200

Route No: US7

Town: Middlebury Count Type: VOLUME Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER

Counter Type: Tube

	Preliminary AADT: 10200	Poll Site: P6A041	Poll Group: Rural Primary and Secondary	
	Fri* Saf* Weekday Weekand All Days** Average Peak Volume:	120 AM Peak***: 968	11521 PM Peak***: 1054	
	All Days**	120	11521	
	Weekend	15	9691	-
	Weekday	105	12252	
	Saf *	24. 15	2909	
	FH*	24.	13200	
	Thu ,	24	11972	11.
	Wed.	24	11791 11945	0
	Tue *	24	11791	,
	Sun* Mon* Tue* Wed* Thu^	68	4717	
-	Sun *			1000
		Hours Averaged:	Average Volume:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

^{*} Averaging by frour(0-23), then by day of week (Sun-Sat)
** Adjusted Average Day equals 5/7 * Avg Weekday + 2/7 * Avg Weekend Day
*** AM _PM Peak Average Volumes are only from the weekday days

Middlebury - Exchange Street - Route 7 Intersection

Project Name: Middlebury - Exchange Street - Route 7 Intersection

Purpose: Finding Peak Hour Adjustment Volumes

Project Number: 6330030
Calculated by: SRZ
Date: 8-Apr-04
Updated: 9-Jun-04

Dufresne-Henry

55 Green Mountain Drive P.O. Box 2246 South Burlington, VT 05407

> #630030 4/8/2004 SRZ

VEHICLE TURNING MOVEMENT COUNT April 2, 2004

Route 7/Exchange St/Happy Valley Rd

Middlebury, VT

2016 DHV **Original Counted Data 2004** 2006 DHV 1.102 x 1.07 1.102 x 1.25 Original Data from April 2, 2004 Adjustment Factor 2004 to 2006 = 1.179 Adjustment Factor 2004 to 2016 = 1.378 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 10 11 12 10 11 12 10 11 0 4 0 2 0 4 0 3 7:45 0 3 8:00 121 1 0 0 1 0 1 8:15 144 0 2 2 1 3 3 1 8:30 22 108 0 0 1 2 26 127 8:45 1 1 2 2 0 1 1 3 3 0 9:00 1 0 1 0 0 1 0 1 0 0 O 2 0 1 2 0 0 0 1 3 0 0 9:15 9:30 1 1 1 1 9:45 10:00 0 0 0 0 1 1 10:15 2 0 1 2 0 0 1 3 0 0 10:30 O 2 2 0 1 2 2 0 1 3 3 10:45 0 0 0 0 0 110 0 0 0 0 0 128 11:00 0 2 0 0 0 2 0 1 0 0 3 0 1 11:15 0 1 0 108 1 1 0 1 0 127 11:30 1 4 0 2 106 3 1 4 0 3 11:45 4 1 1 1 106 4 1 1 12:00 0 2 0 114 0 0 3 0 1 12:15 2 1 3 0 3 1 12:30 0 0 12:45 3 1 13:00 0 2 0 0 3 0 1 0 0 13:15 13:30 1 3 1 0 13:45 0 0 2 1 121 0 0 3 1 0 14:00 0 0 0 1 105 101 0 0 0 0 1 123 14:15 2 0 1 0 0 113 106 3 0 1 0 0 132 14:30 0 0 0 1 1 129 0 0 0 1 1 150 14:45 O 1 0 0 0 1 0 0 1 127 15:00 0 0 1 1 15:15 5 1 6 1 15:30 0 0 164 0 0 192 15:45 2 2 0 0 0 150 3 3 0 0 0 175 16:00 1 0 0 1 0 127 22 124 1 0 0 1 0 149 16:15 0 0 101 0 1 0 0 0 121 119 0 1 0 0 0 142 16:30 1 0 0 0 0 1 0 0 0 137 23 103 0 1 0 0 0 160 16:45 0 0 1 0 1 123 n 114 0 0 1 0 1 143 17:00 103 1 0 1 0 2 165 15 120 1 0 1 0 3 193 119 0 3 7 0 0 146 17:15 101 0 2 6 0 0 125 17:30 105 0 1 1 0 0 116 123 0 1 1 0 0 135 17:45 0 2 0 0 116 0 0 2 0 0 97 135 0 0 3 0 0 113 0

Smith, Mark

From:

Fred Dunnington [fdunnington@town.middlebury.vt.us]

Thursday, May 13, 2004 2:14 PM

Sent:

Smith, Mark

Subject:

RE: Industrial Acreage

Mark -

Call me when you have the stuff that was faxed in your hand — so we can resolve any questions.

The zoning is all Industrial, except for the following areas which are General Commecial: The lots south of Agri -Mark / Cabot, and the area east of Exchange St. (the 35 acre piece and 7 acre piece marked on the Project location Map faxed to you.

Fred

Fred S. Dunnington fdunnington@town.middlebury.vt.us <mailto:fdunnington@town.middlebury.vt.us>
Middlebury Town Planner
Zoning Administrative Officer
94 Main St. Municipal Building
Middlebury VT 05753
(802) 388-8106
(802) 388-4364 fax

Town web site: www.middlebury.govoffice.com http://www.middlebury.govoffice.com

----Original Message----

From: Smith, Mark [SMTP:Mark.Smith@dufresne-henry.com]

Sent: Thursday, April 29, 2004 1:37 PM To: fdunnington@town.middlebury.vt.us

Subject: Industrial Acreage

Any luck with an estimate of acreage for Exchange St.?

The zoning description would help too. I assume you expect a mix of commercial, light industrial and manufacturing uses in these areas.

Thanks.

Mark C. Smith, P.E. Dufresne-Henry Engineers, Planners, Landscape Architects and Environmental Scientists

vox: 802.864.0223 fax: 864.0165 auto:383.0186
55 Green Mountain Drive / Post Office Box 2246
South Burlington, Vermont USA 05407-2246

mark.smith@dufresne-henry.com <mailto:mark.smith@dufresne-henry.com>

www.dufresne-henry.com

TOWN OF MIDDLEBURY

94 MAIN STREET, MIDDLEBURY, VT 05753

FAX TRANSMITTAL SHEET

TO:	Mark Smith	
FAX:	864-0165	FROM FAX #: 802-388-4364
DEPA	ARTMENT AND TEL	EPHONE NUMBER LISTED BELOW:
	TOWN MANAGER 802-388-8100	S OFFICE TOWN CLERK 802-388 8102.
	BOOKKEEPING 802-388-8101	TREATMENT PLANT 802-388-0498
X	ZONING OFFICE 802-388-8105	LISTER'S OFFICE 802-388-8108
-	RECREATION 802-388-4041	PUBLIC WORKS 802-388-4045
	POLICE DEPT. 802-388-3191	LIBRARY 802-388-4095
	BILLING OFFICE 802-388-4047	OTHER
DATE	5-13-04	# OF PGS (INCLUDING COVER)
NOTE	ES:	
M a la	LED: Beth	Dow for Fred Dannington

MUNICIPAL BUILDING 802-388-4041*
FAX 802-388-4364
POLICE DEPARTMENT 802-388-3191*
PUBLIC WORKS DEPARTMENT 802-388-4045
WASTEWATER TREATMENT PLANT 802-388-0498
* TDD AVAILABLE

864-0226

PHELPS ENGINEERING, INC. . MIDDLEBURY, VERMONT

INDUSTRIAL PARK EXPANSION

Middlebury, Vermont

MASTER PLAN

January 1997

PHELPS ENGINEERING, INC. . MIDDLEBURY, VERMONT

TABLE 1
Middlebury Industrial Park Expansion
Existing Industrial Area Data

Tax	Lot Name	Use	Lot	Bldg.		Parking	Businesses	Emple		Average
Parcel Number		Type (Note 1)	(Acres) (Note 2)		Avail.	(Note 4)	within Building	Full	Part Time	(gal/day)
4023	Anthony Neri	Ç/I	4 .	7,500	80	50	Vermont Soap Works	6		238
4023.001	Anthony Nerl (Building only)	C/I		15,500			Vermont Organic Creamery	2	<-Est.	702
							Rebound Video Service	2		188
							Vermont Quality Products	6		777
							Dynamile Radio Inc.	3	1	41
4054	Michael Rainville	C/I	4,4	6,500	26	14	Maple Landmark Woodcraft	15		112
4058	Gioger of Austria	C/I	18,5	45,600	123	45	Gleger of Austria Inc.	60		1,028
4052	Agri-Mark Inc. (Cabot)	Ç/I	34,1	54,000	50	23	Cabot Creamery	70		134,657
	Lawrence W. Miller ()	C/I	9.8	14,304	31	15	Offer Creek Browing Inc.	33		3,740
	Fredrick Danforth	C/I	0.12	8,050	58	32	Danforth Pewletcr	50		581
	Anthony Nori (Building only)	1		7,500			Middlebury Vending	40		275
4027.001	Maxwell E. Ealon, Jr.	1. 1	3.5	7,500	38	23	Otter Creek Awnings	24	13	152
4055	VT Industrial Park (Carrara)	1	8.49	14,884	198	73	Highland Press	4		475
		1					VEMAS	36	1	Included ^
							Questech Melals	72		Included ^
4057	William Holdman	1	4.1	12,816	70	30	William P Holdman Inc	30	10	290
4059	H.R. Funk Trust and H. Funk	1	12.4	49,806	82	43	CPC of Vermont Inc	72	32	2,773
4050,01	VT Industrial Park (Carrara)	1	4,46	10,880	30	14	Clder Jack	19		4,793
4053	Agri-Mark Inc.	1	5.8	10,355	18	5	Agri-Mark Inc.	See Cabot		7,051
	Casella Associates	1	10.1	8,750	24	10	Casella Wasto Management	15		113
4069	Addison County Asphalt Prod.		5.3	2,533	5	1	Addison County Asphalt Prod.	2		777
21030	Bourdeau Feeds	1	4,5	12,046	22	12	Bourdeau & Bushey	14		254
21041	Rogers Fuels Inc.	1	1.2	4,308	16	6	Rogers Fuels Inc.	5		30
21043	Agway Feeds		7	27,000	57	32	Agway Feed Division	10		92
							Agway Truck Plant	3 ·		
							Agway Fertilizer	. 5		431
21044	Louis Quesnot	1	5,2	5,740	13 .	13	Middlebury Packing Co.	6		3,767
4025	VT industrial Park (Carrara)	0	3,1	17,120	88	42	Agency of Human Services	40	<-E\$t.	524
	Carbro Building						Dept. of Employ & Trg.	included ^		Included ^
							Vocational Rehabilitation Off.	included ^		Included ^
							Addison Cty, Court Diversion	included ^		included ^
4028	Yankée Farm Credit	0	3,5	6,002	25	19	Champlain Valley Farm Credit	4	2	172
				/ 500			Porter Medical Orthopedica	6		Included ^
4055	National Bank of Middlebury	0	4.43	4,000	17	6	National Bank of Middlebury	12		92
4060	David F. Folino	D.	4.65	8,485	25	20	Concentrated Knowledge	25	-	84
4052	Bridge School	C	3,5	12,500	35 17	2	Bridge School	5	<-Est.	459
4064.001	Carpenter Enterprises	C	5.92	9,000		9	Champlain Valley Equip, Inc.	. 9	3	133
4073	VFW		1.4	7,100	106	6	VFW Post 7823	5		408
4075,001	Steven Haro	,C	4.62	14,231	80	32	Vermont Sun Sports&Fitness	13		2,454
21037	William R. Jackson	C	1.2	11,947	32	17	William R. Jackson	5	<-Est.	550
	Agway Inc.	C	4.9	20,017	61	4	Agway Building Supply	10		310
21042	Roch R, Macintyre	R	2.2	875	2	. 0	Residential	0		2
4027	Otter Valley Equip. (Carrara)	U	7.1	· No. 6			Open Lot	0		
4045	Middlebury College	0	90	<- Note 5		-	Open Lot	0		
4053	Otter Valley Equip. (Carrars)	U	34,86				Open Lot	. 0		
4051	VT Industrial Park (Carrara)	U.	3.9				Open Lot	0	-	
4064	Middlebury College	U	9.2				Open Lat	0		
4075 21047	VT Industrial Park (Carrara) F.R. Churchill and Sons	U	40,58				Open Lot	0		

Note 1: C/I= Commercial-Industrial Combined Use

I=Industrial
O=Office Use Only
C=Commercial
R=Residential
U=Undeveloped Lot

Note 2: Source: Town of Middlebury Tax Maps
Note 3: Source: Town of Middlebury Listers Office
Note 4: Counted on 7/18/96 between 9:00 and 11:00 A.M.

Note 5: Total lot size=239.7 acres; 90 acres in Industrial Zone, balance is outside Industrial Zone

PHELPS ENGINEERING, INC. . MIDDLEBURY, VERMONT

TABLE 2 Middlebury Industrial Park Expansion Statistics from Existing Industrial Area Data

lumber of Lots		Parking Spaces Available
Total Lots 37		Total Parking Spaces Available 1,447
Indeveloped Lots 8		CommInd. Combined Parking Avail, 378
eveloped Lots 29		Industrial Parking Available 571
CommInd. Combined Use Lots	8	Office Use Only Parking Available 185
Industrial Lots	12	Commercial Parking Available 331
Office Use Only Lots	4	Residential Parking Available 2
Commercial Lots	6	
Residential Lots	1	
		Average Parking Spaces Available Per Acre
		Total Parking Spaces Available Per Acre 7.8
creage		CommInd. Combined Parking Avail./Ac. 5.3
_		
		Office Use Only Parking Avail, per Acre 10.5
Developed Lois Acreage 195.49		Commercial Parking Available per Acre 13.5
Comm,-Ind, Combined Use Acreage	71.02	Residential Parking Available per Acre 0.9
Industrial Acreage	72.05	
Office Use Only Acreage	15,68	
Commercial Acreage	24,54	Number of Employees
Residential Acreage	2.2	Total Number of Employees 798
Liveline High Unigada	4.4	
		Industrial Employees 412
Average Acreage per Lot		Office Use Only Employees 89
fotal Average Acreage/Lot 10,1		Commercial Employees 50
Indeveloped Lots Average Acresge/Lot 23.5		
Doycloped Lots Average Acreage/Lot 6.4		
CommInd. Combined Use Avg. Ac./Lot	11.8	Average Number of Employees Per Acre
Industrial Average Acreage/Lot	0.0	Total Avg. Number of Employees/Acre 4.3
Office Use Only Average Acreage/Lot	3,9	CommInd. Comb. Use Employees/Acre 3.5
Commercial Average Acreage/Lot	4.1	Industrial Employees/Acre 5.7
Residential Average Acreage/Lot	2.2	Office Use Only Employees/Acre 5.7
		Commercial Employees/Acre 2.0
• .		
Building Area (Sq.Ft.)		
Total Building Area 437,049		Water Usage-Including Cabot (GPD)
	151,454	
Industrial Building Area	174,318	Comm, Ind. Comb. Use Water Usage 141,287
Office Use Only Building Area	35,607	Industrial Water Usage 20,496
Commercial Building Arca	74,795	Office Use Only Water Usage 872
Residential Building Arca	875	Commercial Water Usage 4,312
Average Building Area Per Acre (Sq.Ft.)		Avg. Water Usage Per Acre-Including Cabot (GPD/Acre)
Total Building Area/Acre 2,356		Total Average Water Usage per Acro 900
CommInd. Comb, Use Avg. Bidg. Area/	2,133	
Industrial Average Building Area/Acre	2,419	
		Industrial Average Water Usage/Acro 264
Office Use Only Average Bldg, Area/Acre	2,271	Office Use Only Avg. Water Usage/Acre 56
Commercial Average Building Area/Acre	3,048	Commercial Average Water Usage/Acre 176
Rosidonilal Average Building Area/Acre	398	
		Water Usage-Excluding Cabot (GPD)
Building Lot Coverage (%)		Total Water Usage 25,261
Total Building Lot Coverage 5,4%		Comm,-Ind, Comb. Use Water Usage 6,830
CommInd. Comb, Use Lot Coverage	4,9%	Industrial Water Usage 13,445
Industrial Building Lot Coverage	5,6%	Office Use Only Water Usage 872
Office Use Only Building Lot Coverage	5,2%	Commercial Water Usage 4,312
Commorcial Building Lot Coverage	7,0%	A,312
Residential Building Lot Coverage	0.9%	
		Avg. Water Usage Per Acre-Excluding Cabot (GPD/Acre)
		Total Average Water Usage per Acre 174
		CommInd. Combined Lise Water/Acro 180
		Industrial Average Water Usage/Acre 203
		Office Use Only Avg. Water Usage/Acre 56
		Commercial Average Water Usage/Acre 176

PROJECT LOCATION MAP

Industrial Park Trip Generations

7th Gen: Land Use 130 pg 132

Industrial parks contain a number of industrial or related facilities. They are characterized by a mix of manufacturing, service and warehouse facilities with a wide variation in the proportion of each type of use from one location to another. Many industrial parks contain highly diversified facilities - some with a large number of small businesses and others with one or two dominant industries.

Assumptions:

271,000 SF of floor space

AM Weekday Peak Hour for Street 222 vehicle trip ends

82 % Entering 18 % Exiting

PM Weekday Peak Hour for Street 251 vehicle trip ends

21 % Entering 79 % Exiting

General Office Building Trip Generations

7th Gen: Land Use 710 pg 1149

A general office building houses multiple tenants, it is a location where affaris of businesses, commercial or industrial organizations, or professional persons or firms are conducted. An office building or buildings may contain a mixture of tenant services such as a bank or savings and loan institutionn, a restaurant or cafeteria, and service retail facilities.

Assumptions:

20,000 SF office building

AM Weekday Peak Hour for Street 52 vehicle trip ends

88 % Entering 12 % Exiting

PM Weekday Peak Hour for Street 101 vehicle trip ends

> 17 % Entering 83 % Exiting

Free-Standing Discount Store Trip Generations

7th Gen: Land Use 815 pg 1347

The discount stores in this category are free-standing stores with off-street parking. They usually offer a variety of customer services, centralized cashiering and a wide range of products. They typically maintain long store hours 7 days a week. The stores included in this land use are often the only ones on the site, but they can also be found in mutual operation with a related or unrelated garden center and/or service station. Free standing discount stores are also sometimes found as separate parcels within a retail complex with their own dedicated parking.

Assumptions: 35 acres of land Commercial avg. 3048 SF per acre 107,000 SF Floor Area

AM Weekday Peak Hour for Street ~90 vehicle trip ends

66 % Entering 34 % Exiting

PM Weekday Peak Hour for Street ~540 vehicle trip ends

50 % Entering 50 % Exiting

DUFRESNE-HENRY PREPARED BY Zehler CALCULATIONS CHECKED BY ASSUMPTIONS / METHODS CHECKED BY SUBJECT		PROJECT NO. #6330030 SHEET NOOF5
Total New (Am) Asi	apploxmates sociates Ar	d from Bruno nalysis, 1997
Am weekday Peak Industre. 222 > 18% exit ->	182	TOTAL ENTER 287
Office 52 > 12% ext >>		TOTAL EXIT
BigBox 90 > 66% enter -> 34% exit ->	59 31	

CALCULATIONS CHECKED BY	DATE 5/10/04	PROJECT NO.#633003 SHEET NOZ_0F_5
TOTAL NEW (PM) TRAFFIC GENERATED	%'s approximate Associations	nated from sciates Analysis,
Pm Weekday Peak		
Industr 251 >> 21% en 79% ex	ler → 53 4+ → 198	TOTAL ENTER
Office 101 3 17% enter 83% ext 81980X 540 7 50% enter 50% enter	2 → 17 - → 84 R → 270	TOTAL EXIT
540 > 50% exit	→ 270	

DUF	RESNE-HENRY		
PREPARED BY Stephane Zehler	n	ATE 5/18/04	_ PROJECT NO. #6330030
CALCULATIONS CHECKED BY	D/	ATE	_ SHEET NO 3 _ 0F _ 5
ASSUMPTIONS / METHODS CHECKED BY		ATE	_ SHEET NOUF
SUBJECT	U/	416	_
SUBJECT			·
Approximated %'s for TRAFFIC Analysis	1	from 1 5, 1997	3 runo Associates Counts
	906	7. (71%)	
			< <u>5% (1%)</u>
	62% (68%)		
A Sunday	10% (2%)	→ 4	5% (28%)
	<u>28% (30%)</u>	- 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<u> </u>
		J	

54 62% (94) (60%) 144 90% (71) (71%) ODD AM	
9 10% (3) (2%) 8 5% (1) (1%) (000) PM	
24 28% (41) (30%) 8 5% (28) (20%) = Entering	+
97 138 160 100 = 8xhra Traffic	

CALCULATION	Skephame Z S CHECKED BY	DUFRESNE-HENRY	DATE 5/19/04	PROJECT NO. #6330030 SHEET NO. 4 OF 5
A A	pproximated %	Taken Lysis Ana Adjus	from Bro 14515, 1997 ted 1997 Ci	emo Asociates ounts
			90% (71%)	5% (TV)
(552) XMNG			% (60%) 1 % (2%) → 7 % (30%) √	THE 5% (28%)
change street	287 (340)	MERING,		3
9 10	Teafic 2% (94) (60% % (3) (2%) 9% (41) (30% (138)) 144 9 8 5	2 TROFFIC 0% (71) (19 % (1) (19 % (28) (20 100	LEGEND Am (PM) Entering TRAFFIC Extra TRAFFIC

	DUFRESNE-HENRY		//-
PREPARED BY Stephante Zeh CALCULATIONS CHECKED BY		DATE	PROJECT NO. <u>6330030</u> SHEET NO. <u>5 OF 5</u>
ASSUMPTIONS / METHODS CHECKED BYSUBJECT		DATE	
Projected Traffic with Development] Th & Out 000 A (000) P	t of New 1	Sevelopment (Based on (Bruno %)
		119	
	132	(94)	
27 (204)	(133)		7 (2)
(348)	17(13	9)1	
	3(4)	- }	7(37)
155 (207)	+ (01)		
			144 (71)
54 (94) 9 (3) 7 87 353	%	160 46%	9(1)
(37) (37) (37) (37)	8) 187 59% (156) 61°/6		
,161, 65%			
(234) (63%)	,	70 57)	
-Out-			

*	SKZ
PREPARED BY Stephanie Zehler	DATE 5/18/04 PROJECT NO. 6330030
CALCULATIONS CHECKED BY	. DATE SHEET NOOF
ASSUMPTIONS / METHODS CHECKED BYSUBJECT	. DATE
SUBJECT	
Industrial Park 271,000 S	F Landuse 130
Trip Generations	Page 132
	9
Am Weekday Peak HR For Street	
Ln(T) = 0.77 Ln(x) + 1.09	82% entring
T=222 vehicle End teips	82% entring 10% exting
1-222 1014000	
Pm weekday Peak HR Fox Street	.+
T= 077 (x)+42.11	2101- 0 -te-ena
T = 251 vehicle end teips	21% entering 79% exting
1 231 00140	1112 61 1111 9
General office	= Landuse 710
Building Trip Generations 29000 SF	page 1149
-	
Am Weekday Peak HR FOR Street	
Ln(T) = 0.80 Ln(x) + 1.55	
Ln(T) = 3,947	12% etiting
T= 52 vehicle end trips	
1 - 52 venue ona noises	

PM Weekday Peak HR for Streets

T= 1.12 (x) + 78.81

T=101 vehille end taps

17% enterior

	5/19/04 PROJECT NO. <u>6330030</u> SHEET NO. <u>3</u> 0F <u>3</u>
Free-Standing Discount Store Trip Generations 107,000 SF	Landuse 815 Page 1347
Am Weekday Peak He For Street ~ 90 Vehicle teip ends from graph approximated	66% enterng 34% etiling
PM weekday Peak HR For Street	
~540 vehille teip ends from graph approximated	50% entering 50% exting

Middlebury - Exchange Street - Route 7 Intersection

AM Adjusted Peak Vo	AM Adjusted Peak Volumes for 2006												
•	1	2	3	4	5	6	7	8	9	10	11	12	
7:45	37	166	1	0	4	0	2	78	6	0	1	5	299
8:00	40	121	1	0	0	1	1	79	7	6	1	14	272
8:15	41	144	0	2	2	1	1	74	13	12	0	8	299
8:30	22	108	0	0	1	2	1	97	9	5	0	14	261
	140	540	2	2	7	5	6	328	35	22	2	41	1132
PM Adjusted Peak Vo	lumes	for 20	06										
•	1	2	3	4	5	6	7	8	9	10	11	12	
15:15	17	91	2	0	5	1	0	150	7	11	2	28	314
15:30	15	108	0	4	2	0	0	164	4	15	4	25	341
15:45	20	126	2	2	0	0	0	150	5	6	4	29	344
16:00	19	106	1	0	0	1	0	127	5	13	1	29	303
	71	432	6	6	7	2	0	591	20	45	11	112	1302
AM Adjusted Peak Volumes for 2016 w/out development													
	1	2	3	4	5	6	7	8	9	10	11	12	
7:45	43	194	1	0	4	0	3	91	7	0	1	6	350
8:00	47	142	1	0	0	1	1	92	8	7	1	17	318
8:15	48	168	0	3	3	1	1	87	15	14	0	10	350
8:30	26	127	0	0	1	3	1	113	11	6	0	17	305
	164	631	3	3	8	6	7	383	41	26	3	48	1323
PM Adjusted Peak Vo	lumes	for 20	16 w	out o	level	opme	ent						
	1	2	3	4	5	6	7	8	9	10	11	12	
15:15	19	106	3	0	6	1	0	175	8	12	3	33	367
15:30	18	127	0	4	3	0	0	192	4	18	4	29	398
15:45	23	147	3	3	0	0	0	175	6	7	4	34	402
16:00	22	124	1	0	0	1	0	149	6	15	1	34	354
	83	504	7	7	8	3	0	690	23	52	12	131	1521
AM Adjusted Peak Vo			•			•	_	_				4.0	
- 4- 4- 4-	1	2	3	4	_	6	7	8	9	10			
7:45 to 8:45	102	-	-	-	5	-	-	-	12	9	1	17	146
DM Adjusted Deals Va	lumaa		مطامد		Day	Jann		2046					
PM Adjusted Peak Vo			-			-			0	40	4.4	40	
2.45 to 4.45 DM	1	2	3	4	5 9	6	7	8	9 27	10	11	12	207
3:15 to 4:15 PM	97	-	-	-	9	-	-	-	21	55	12	137	337
AM Adjusted Peak Volumes for 2016 including new Development													
Alli Aujusteu i eak vo	1	2	3	4	5	6	7	8	9	10	11	12	
7:45 to 8:45	266	631	3	3	13	6	7	383	53	35	4	65	1469
7.43 10 0.43	200	001	3	3	13	U	•	303	33	33	_	05	1409
PM Adjusted Peak Volumes for 2016 including new Development													
• · · · · · · · · · · · · · · · · · · ·	1	2	3	4	 5	6	7	8	9	10	11	12	
3:15 to 4:15 PM	180	504	7	7	17	3	0	690	50	107		268	1858
0.10 to 4.10 l W	.00	JU-7	•	•	.,	•	•	330	55			_00	1000

Signal Clarrat Output DUNE 04 Raw Pata 1) 2004 AUV × 1.036 Add had Pak Growth (2) 2006 AWV X1.066 (3) 2016 AWV X1,245 (3) lator

COUNT X FACTOR = DHV 2002

DH.V2002 × 1.07 = DHV 2006

DHV2002 × 1.25 = DHV 2016

X1.04 = DHV 2004

DHV ×
$$\frac{1}{1.106}$$
 = AWV

Site ID: Town: Location:	N	P6A041 lew Havei lew Havei	n: US7 0.3			avg	APRIL /AWD=	1.063			ADT: oute No:	6900 US7	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
and the same of th	1	1.79	1.33	0.87	1.03	1.00	1.02	0.98		1.09	0.97	0.81	1.28
	2	0.96	0.98	1.03	0.98	1.00	1.33	0.97	0.91	1.27	0.97	1.01	0.97
	3	0.95	1.43	1.35	0.98	0.88	1.06	0.93	1.06	1.02	0.91	1.24	0.92
	4	0.89	1.00	1.06	0.98	0.98		1.62	1.20	1.00	0.84	0.99	0.88
	5	1.06	1.02	1.04	0.87	1.23	1.01	0.98	1.03	0.99	0.92	0.93	0.91
	6	1.35	0.94	0.99	1:03	1.06	0.98	1.05	0.93	0.91	1.15	0.94	0.88
	7	1.03	0.92	0.97	1.38	1.01	0.89	1.22	0.88	1.06	0.95	0.89	0.95
	8	0.90	0.87	0.86	1.04	0.97	1.01	1.01	0.87	1.25	0.95	0.79	1.39
	9	0.91	0.99	0.95	1.01	0.96	1.29	0.96	0.83	1.06	0.94	0.98	0.98
	10	0.92	1.38	1.29	0.97	0.89	1.03	0.96	0.98	1.00	0.89	1.24	0.90
	11	0.86	1.07	1.00	0.94	0.98	0.97	0.95	1.25	1.01	0.85	0.98	0.89
	12	1.03	0.93	0.96	0.85	1.14	1.00	0.89	1.00	0.97	0.93	0.92	0.96
	13	1.36	0.98	0.92	1.03	1.08	0.95	1.02	0.96	0.89	1.11	0.89	0.79
	14	0.95	0.89	0.88	1.31	1.03	0.90	1.13	0.90	1.01	0.96	0.88	1.19
	15	0.95	0.81	0.78	0.97	0.98	0.84	1.00	0.92	1.35	0.96	0.81	1.31
	16	0.91	0.94	0.91		0.99	1.00	0.96	0.89	0.96	1.01	1.01	0.93
	17	0.92	1.38	1.16	0.92	0.89	1.06	0.97	1.05	0.96	0.96	1.97	0.84
	18	0.84	1.02	1.10	0.90	1.03	0.98	0.90	1.24	0.95	0.89	1.27	0.84
	19 20	0.98	0.93	0.99	0.85	1.15	0.94	0.88	1.02	0.94	1.06	0.95	0.84
	21	1.27	0.92	1.00	1.03	1.02	0.93	1.00	0.96	0.84	1.31	0.88	0.90
	22	1.01 0.94	0.90	0.99	1.29	0.96	0.92	1.18	0.93	0.93	1.06		1.06
	23	0.94	0.86	0.89	1.01	0.94	1.12	1.04	0.93	1.28	0.99	0.84	1.23
	24	0.91	1.00 1.32	1.04	0.99	0.91	1.28	0.95	0.86	1.02		1.19	0.87
	25	0.83	1.02	1.37	0.99	0.82	1.03	0.92	1.14	0.97	0.98	1.34	1.08
	26	1.00	0.95	1.14	0.97	0.96 1.12	0.95	0.90	1.25	0.95	0.93	0.91	2.04
	27	1.31	0.98	0.97	0.00		0.98	0.87	1.07	0.92	1.22	0.83	1.14
	28	0.93	0.90	0.90	1.36	1.23	0.94	1.04	1.06	0.88	1.30	0.90	0.94
	29	0.93		0.90	1.03	0.95 0.97	0.86	1.20	1.10	0.92	1.07	1.45	1.08
	30	0.95		1.09	0.94	1.01	1.06	0.99 0.95	1.07	1.23	1.08	1.14	1.41
_	31	1.15		1.18	0.54	0.91	1.26	0.95	1.00	1.02	1.07	1.13	0.92
MADT to A		1.14	1.10	1.09	1.04	0.95	0.91	0.88	0.82	0.95	1.11 0.94	1.12	1.06 1.12

#6330030 119 458 Z US7-Exch St 4/8/01 SRZ al L 2 ← 6 2 -5 J 4 19 Am PEAK 7.45-0:45 30 278 5 60 366 5 95 6 PM PEAK J 2 3:15-4:15 38 17 501 6

Tillialy al	nu oeconua	ıı y						Sh	ort Term G			1.04
	1997	1998	1999	2000	2001	2002	2003	2004	20 Year G 2005	2006	2007	1.35 2008
1997	1.00								2000	2000	2007	2000
1998	1.01	1.00										
1999	1.02	1.01	1.00									
2000	1.02	1.02	1.01	1.00								
2001	1.03	1.02	1.02	1.01	1.00							
2002	1.04	1.03	1.02	1.02	1.01	1.00						
2003						1.02	1.00					
2004						1.04	1.02	1.00				
2005					88	1.05	1.03	1.02	1.00			
2006						1.07	1.05	1.03	1.02	1.00		
2007					\$88	1.09	1.07	1.05	1.03	1.02	1.00	
2008						1.11	1.09	1.07	1.05	1.03	1.02	1.00
2009						1.12	1.10	1.08	1.07	1.05	1.03	1.02
2010						1.14	1.12	1.10	1.08	1.07	1.05	1.03
2011						1.16	1.14	1.12	1.10	1.08	1.06	1.05
2012						1.18	1.15	1.14	1.12	1.10	1.08	1.06
2013						1.19	1.17	1.15	1.13	1.11	1:10	1.08
2014						1.21	1.19	1.17	1.15	1.13	1.11	1.10
2015						1.23	1.21	1.19	1.17	1.15	1.13	1.11
2016						1,25	1.22	1.20	1.18	1.16	1.14	1.13
2017					. 388	1.26	1.24	1.22	1.20	1.18	1.16	1.14
2018						1.28	1.26	1.24	1.22	1.20	1.18	1.16
2019						1.30	1.28	1.25	1.23	1.21	1.19	1.17
2020						1.32	1.29	1.27	1.25	1.23	1.21	1.19
2021						1.33	1.31	1.29	1.27	1.25	1.23	1.21
2022						1.35	1.33	1.30	1.28	1.26	1.24	1.22
2023						1.37	1.34	1.32	1.30	1.28	1.26	1.24
2024						1.39	1.36	1.34	1.32	1.29	1.27	1.25
2025						1.40	1.38	1.36	1.33	1.31	1.29	1.27
2026						1.42	1.40	1.37	1.35	1.33	1.31	1.29
2027						1.44	1.41	1.39	1.37	1.34	1.32	1.30
2028						1.46	1.43	1.41	1.38	1.36	1.34	1.32
2029						1.47	1.45	1.42	1.40	1.38	1.35	1.33
2030						1.49	1.46	1.44	1.42	1.39	1.37	1.35
2031						1.51	1.48	1.46	1.43	1.41	1.39	1.36
2032						1.53	1.50	1.47	1.45	1.43	1.40	1.38
2033						1.54	1.52	1.49	1.47	1.44	1.42	1.40
2034						1.56	1.53	1.51	1.48	1.46	1.43	1.41
2035	,					1.58	1.55	1.52	1.50	1.47	1.45	1.43
2036						1.60	1.57	1.54	1.52	1.49	1.47	1.44
2037						1.61	1.58	1.56	1.53	1.51	1.48	1.46
2038						1.63	1.60	1.57	1.55	1.52	1.50	1.48
2039						1.65	1.62	1.59	1.57	1.54	1.51	1.49
2040						1.67	1.64	1.61	1.58	1.56	1.53	1.51
2041						1.68	1.65	1.63	1.60	1.57	1.55	1.52
2042					,	1.70	1.67	1.64	1.62	1.59	1.56	1.54
2043						1.72	1.69	1.66	1.63	1.61	1.58	1.55
2044						1.74	1.71	1.68	1.65	1.62	1.60	1.57
2045						1.75	1.72	1.69	1.67	1.64	1.61	1.59
2046						1.77	1.74	1.71	1.68	1.65	1.63	1.60
2047						1.79	1.76	1.73	1.70	1.67	1.64	1.62

DHV DETERMINATION BASED ON AADT AND HIGHWAY CLASS

AADT	Interstate	General	Recreational
50	. 80	65	145
100	90	70	150
150	95	75	155
200	100	80	165
250	105	85	170
300	115	95	175
350	120	100	180
400	125	105	190
450	130	110	195
500	140	115	200

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 SRZ

07/08/04 16:39:37

WARRANTS/TEAPAC[ver 2.02.14] - MUTCD Warrant Analysis

Conditions Used for Warrant Analysis	2003 MUTCD
Major Street Direction	NorthSouth
Number of Lanes in North-South direction	1
Number of Lanes in East-West direction	1
Approach speed on major street is greater than 40 mph	No
Isolated community has population less than 10,000	No No
Signal will not seriously disrupt progressive traffic f	
Trials of other remedies have failed to improve conditi	ons No
Number of accidents correctable by a signal	0
Peak hour stop sign delay for worst minor approach (veh	i-hours) 0
Number of accidents correctable by a multi-way stop	0
Peak hour average delay for all minor approaches (sec/v	reh) 0

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1A	Analysis	_	8-Hour	Minimum	Vehicular	Volume
wallant IA	Allalysis		o noui	MITTER THE	veniculai	vo i unic

Start Time	 1515	 1615	1400	 1145	945	1300	1045	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	152	149	137	122	98	95	76	73	150
Major Volume	1013	1029	845	763	702	756	734	875	500
Warrant Met?	Yes	No	No	No	No	No	No	No	8
=======================================		=====		=====			=====	=====	=====
Number of 1-hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow									1
Signal will n	ot ser	10us ly	dısru	pt pro	gressi	ve tra	ttic f	low	Yes

>> WARRANT 1A IS NOT MET <<

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1500	1600	1400	===== 1130	1700	===== 1300	===== 945	===== 800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	145	142	137	120	111	95	98	73	75
Major Volume	994	898	845	767	983	756	702	875	750
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	8
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====

Number of 1-hour periods meeting the warrant 6
Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 1B IS NOT MET <<

Warrant 1A Analysis (80%) - 8-Hour Minimum Vehicular Volume

Start Time	1545	1445	1345	1645	1130	1230	945	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume Major Volume Warrant Met?	148 953 Yes	135 928 Yes	131 833 Yes	126 1005 Yes	120 767 Yes	100 708 No	98 702 No	73 875 No	120 400 8

ng the warrant 5

Н

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 SR7

07/08/04 16:39:37

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B Analysis (80%) - 8-Hour Interruption of Continuous Traf Start Time 1500 1600 1400 1200 1700 1000 ==== ==== 96 77 Minor Volume 145 142 137 115 111 95 60 Major Volume 994 898 845 718 756 705 765 983 600 Warrant Met? Yes Yes Yes Yes Yes Yes Yes 8 Yes

Number of 1-hour periods meeting the warrant 10

Warrant 1C Analysis - 8-Hour Combination of Warrants

80% of Warrants 1A and 1B are met No Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce delays No

>> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1545	1445	1645	1345	1145	945	1245	1045	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	148	135	126	131	122	98	89	76	-
Minor Regrmt	112	118	99	145	164	180	171	172	<
Warrant Met?	Yes	Yes	Yes	No	No	No	No	No	4

Number of 1-hour periods meeting the warrant 3
Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 2 IS NOT MET <<

Warrant 3A Analysis - Peak Hour Delay

Start Time	1515	1615	====== 1415	1315	1115	===== 1215	945	===== 800	Req.
========	====	====	====	====	====	====	====	====	====
Minor Volume	152	149	118	114	107	104	98	73	100
Total Volume	1178	1182	989	889	866	850	811	962	800
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes 	No	No	1

>> WARRANT 3A IS NOT MET <<

Η

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 SRZ 07/08/04 16:39:37

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant	3в	Analysis	_	Peak	Hour	∨olume
---------	----	----------	---	------	------	--------

Start Time	1515	1615	1400	1145	945	1300	1045	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	152	149	137	122	98	95	76	73	-
Minor Regrmt	201	196	260	295	319	298	306	246	<
Warrant Met?	No	No	No	No	No	No	No	No	1
=========	=====	=====	=====	=====	======		=====	=====	=====
Number of 1-h	our pe	riods	meetin	g the	warrant	_			0

Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 3B IS NOT MET <<

Warrant 7 Analysis - Crash Experience

80% of Warrant 1A or 1B is met	Yes
Signal will not seriously disrupt progressive traffic flow Trials of other remedies have failed to reduce accidents	Yes
Trials of other remedies have failed to reduce accidents	No
Number of correctable accidents (must be 5 or more per year)	0

>> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

	=======
Warrant 1A 8-Hour Minimum Vehicular Volume	NOT MET
Warrant 1B 8-Hour Interruption of Continuous Traffic	NOT MET
Warrant 1C 8-Hour Combination of Warrants	NOT MET
Warrant 2 4-Hour Vehicular Volume	NOT MET
Warrant 3A Peak Hour Delay	NOT MET
Warrant 3B Peak Hour Volume	NOT MET
Warrant 7 Crash Experience	NOT MET
	=======

>> Traffic Signal Warrant is NOT MET <<

WARRANTS/TEAPAC[ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant A Analysis - Interim Measure for Signal

If signal warrants are met, a temporary multi-way stop is allowed

>>> WARRANT A IS NOT MET <<

Warrant B Analysis - Crash Experience

Number of correctable accidents (must be 5 or more per year) 0

>> WARRANT B IS NOT MET <<

Н

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 Page 3 07/08/04 16:39:37 WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant C An	alysis	- 8-н	our Mi	nimum	Vehicu	ılar Vo	olume		
Start Time	1515	1630	1400	1130	945	1230	800	1045	Req.
Minor Volume Major Volume Warrant Met?	165 1013 No	159 1021 No	==== 140 845 No	132 767 No	109 702 No	108 708 No	==== 87 875 No	56 553 No	200 300 8
Average minor Average major Delay for all	volum	e for	8 high	est mi	inor ho	urs	30 sec,	/veh)	120 811 0
					>> W	/ARRAN	Γ C IS	NOT M	IET <<
Warrant D An	alysis	- 8-н	our Co	mbinat	ion of	Warra	ants		
Start Time	1515 ====	1630	1400	1130	945	1230	800	1045	Req.
Minor Volume Major Volume Warrant Met?	165 1013 Yes	159 1021 No	140 845 No	132 767 No	109 702 No	108 708 No	87 875 No	56 553 No	160 240 8
Average minor Average major Number of cor Delay for all	volum rectab	e for le acc	8 high idents	est mi (must	inor ho be 4	ors or mor	re per y 24 sec	year) /veh)	120 811 0
					 >> W	/ARRAN	Γ D IS	NOT M	===== IET <<
Summary of MU	TCD Mu	lti-wa	y Stop	Warra	ant Ana	llysis			
Warrant B Cr Warrant C 8-	terim ash Ex Hour M Hour C	perien inimum	ce Vehic	ular v	olume/			NC	T MET

>> Multi-way Stop Warrant is NOT MET <<

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 SRZ

06/17/04 12:27:50

WARRANTS/TEAPAC[Ver 2.02.14] - MUTCD Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant	1A	Analys	sis	_	8-Hour	Minimum	Vehicular	Volume
---------	----	--------	-----	---	--------	---------	-----------	--------

Start Time	1515	1615	1415	===== 1315	===== 1115	====== 1215	945	800	Req.	
========	====	====	====	====	====	====	====	====	====	
Minor Volume	152	149	118	114	107	104	98	73	105	
Major Volume	1013	1029	866	767	748	736	702	875	350	
Warrant Met?	Yes	Yes	Yes	Yes	Yes	No	No	No	8	
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====	
Number of 1-hour periods meeting the warrant									5	
	Signal will not seriously disrupt progressive traffic flow									

>> WARRANT 1A IS NOT MET <<

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1545	 1445	 1345	1645	 1145	945	1245	1045	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	148	135	131	126	122	98	89	76	53
Major Volume	953	928	833	1005	763	702	736	734	525
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8

Number of 1-hour periods meeting the warrant 10 Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 1B IS MET <<

Warrant 1A Analysis (80%) - 8-Hour Minimum Vehicular Volume

=========	=====	=====	=====	=====	=====	=====	=====	=====	=====
Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	152	149	118	114	107	104	98	73	84
Major Volume	1013	1029	866	767	748	736	702	875	280
Warrant Met?	Yes	No	8						
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====

Page 1

7

Н

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 SR7

06/17/04 12:27:50

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B Analysis (80%) - 8-Hour Interruption of Continuous Traf Start Time 1630 1530 1430 1130 1330 1230 1030 ==== ==== ==== ==== ==== 120 79 Minor Volume 149 146 123 119 100 84 42 Major Volume 1021 994 897 805 708 703 742 767 420 Warrant Met? Yes Yes Yes Yes Yes Yes Yes Yes 8 _____ Number of 1-hour periods meeting the warrant (56% allowed) 10

Warrant 1C Analysis - 8-Hour Combination of Warrants

80% of Warrants 1A and 1B are met (56% allowed)
Signal will not seriously disrupt progressive traffic flow
Trials of other remedies have failed to reduce delays
No

>> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	1015	915	Req.
========	====	====	====	====	====	====	====	====	====
Minor Volume	152	149	118	114	107	104	85	77	_
Minor Regrmt	60	60	60	63	65	66	70	65	<
Warrant Met?	Yes	4							
	=====	=====	=====	=====	=====	=====	=====	=====	=====
Number of 1-hour periods meeting the warrant									9
Signal will not seriously disrupt progressive traffic flow									

>> WARRANT 2 IS MET <<

Warrant 3A Analysis - Peak Hour Delay

========= Start Time	===== 1515	1615	1415	===== 1315	====== 1115	===== 1215	===== 945	===== 800	Req.
Minor Volume Total Volume Warrant Met?	152 1178 Yes	149 1182 Yes	==== 118 989 Yes	==== 114 889 Yes	107 866 Yes	104 850 Yes	98 811 No	73 962 No	100 800 1

Number of 1-hour periods meeting the warrant 6
Signal will not seriously disrupt progressive traffic flow Yes
Delay for worst minor approach (must be at least 4 veh-hours) 0

>> WARRANT 3A IS NOT MET <<

Η

13---2006 - reduced warrant text.txt Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 SRZ

06/17/04 12:27:50

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant	3в	Analy	/sis	-	Peak	Hour	Volume
---------	----	-------	------	---	------	------	--------

=========		=====			=====	=====			
Start Time	1630	1530	1430	1330	1145	945	1045	1245	Req.
========	====	====	====	====	====	====	====	====	====
Minor Volume	149	146	123	119	122	98	76	74	_
Minor Regrmt	79	81	91	114	126	144	135	208	<
Warrant Met?	Yes	Yes	Yes	Yes	No	No	No	No	1
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====
Number of 1-hour periods meeting the warrant									4
Signal will not seriously disrupt progressive traffic flow									

>> WARRANT 3B IS MET <<

Warrant 7 Analysis - Crash Experience

80% of Warrant 1A or 1B is met	Yes
Signal will not seriously disrupt progressive traffic flow Trials of other remedies have failed to reduce accidents	Yes
Trials of other remedies have failed to reduce accidents	No
Number of correctable accidents (must be 5 or more per year)	0

>> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

	_====:	====
Warrant 1A 8-Hour Minimum Vehicular Volume	NOT	MET
Warrant 1B 8-Hour Interruption of Continuous Traffic		MET
Warrant 1C 8-Hour Combination of Warrants	NOT	MET
Warrant 2 4-Hour Vehicular Volume		MET
Warrant 3A Peak Hour Delay	NOT	MET
Warrant 3B Peak Hour Volume		MET
Warrant 7 Crash Experience	NOT	MET
	=====	====

>> Traffic Signal Warrant is MET <<

WARRANTS/TEAPAC[ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant A Analysis - Interim Measure for Signal

If signal warrants are met, a temporary multi-way stop is allowed

>>> WARRANT A IS MET <<

Warrant B Analysis - Crash Experience

//

Н

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday April 2, 2004 Page 3 06/17/04 12:27:50 WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant C Analysis - 8-Hour Minimum Vehicular Volume										
Start Time	1500 1600	1400	1130	1700	945 ====	1230	800	Req.		
Minor Volume Major Volume Warrant Met?	159 146 994 898 Yes Yes	140 845 Yes	132 767 No	123 983 No	109 702 No	108 708 No	87 875 No	140 210 8		
Average minor volume for 8 highest minor hours 126 Average major volume for 8 highest minor hours 847 Delay for all minor approaches (must be at least 30 sec/veh) 0										
>> WARRANT C IS NOT MET <<										
Warrant D An	alysis - 8-1	Hour Co	mbinat	ion of	Warra	nts =====				
Start Time	1515 1630	1400	1130	945	1230	800	1045	Req.		
Minor Volume Major Volume Warrant Met?	165 159 1013 1021 Yes No	140 845 No	132 767 No	109 702 No	108 708 No	87 875 No	56 553 No	160 240 8		
Average minor volume for 8 highest minor hours 120 Average major volume for 8 highest minor hours 811 Number of correctable accidents (must be 4 or more per year) Delay for all minor approaches (must be at least 24 sec/veh) 0										
				>> W	ARRANT	D IS	NOT M	ET <<		
Summary of MU	TCD Multi-wa	ay Stop	Warra	nt Ana	lysis					
Warrant A Interim Measure for Signal MET Warrant B Crash Experience NOT MET Warrant C 8-Hour Minimum Vehicular Volume NOT MET Warrant D 8-Hour Combination of Warrants NOT MET										

>> Multi-way Stop Warrant is MET <<

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 SR7

07/08/04 16:41:21

WARRANTS/TEAPAC[ver 2.02.14] - MUTCD Warrant Analysis

Conditions Used for Warrant Analysis	2003 MUTCD
Major Street Direction	NorthSouth
Number of Lanes in North-South direction	1
Number of Lanes in East-West direction	1
Approach speed on major street is greater than 40 mph	No
Isolated community has population less than 10,000	No
Signal will not seriously disrupt progressive traffic f	ow Yes
Trials of other remedies have failed to improve condition	ns No
Number of accidents correctable by a signal	0
Peak hour stop sign delay for worst minor approach (veh-	hours) 0
Number of accidents correctable by a multi-way stop	0
Peak hour average delay for all minor approaches (sec/ve	eh) 0

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1A	Analysis	_	8-Hour	Minimum	Vehicular	Volume
wallant IA	Allalysis		o noui	MITTER THE	veniculai	vo i unic

Start Time	1545	1445	1345	1645	1145	945	1245	1045	Req.
Minor Volume Major Volume Warrant Met?	172 1118 Yes	159 1088 Yes	153 975 Yes	148 1177 No	146 900 No	117 823 No	105 865 No	89 863 No	150 500 8
Number of 1-hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow									

>> WARRANT 1A IS NOT MET <<

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1500	1600	1400	1200	1700	1000	1300	1100	Req.
========	====	====	====	====	====	====	====	====	====
Minor Volume	169	165	162	138	130	114	111	91	75
Major Volume	1166	1052	990	899	1152	842	888	832	750
Warrant Met?	Yes	8							

Number of 1-hour periods meeting the warrant 10 Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 1B IS MET <<

Warrant 1A Analysis (80%) - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
========	====	====	====	====	====	====	====	====	====
3	1189	174 1205		133 899	127 881	124 868	117 823	87 1027	120 400
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	8

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004

07/08/04 16:41:21

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B An	alysis	(80%)	- 8-н	our Ir	nterrup	tion o	f Cont	inuous	Traf
Start Time	1630	1530	 1430	1130	1330	1230	1030	930	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	174	171	146	143	138	119	98	95	60
Major Volume	1195	1166	1051	906	944	832	826	870	600
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Number of 1-h	our ne		 meetin	a the	warrani	 -			10
	- PC			5		-			

Warrant 1C Analysis - 8-Hour Combination of Warrants

	=====
80% of Warrants 1A and 1B are met	No
Signal will not seriously disrupt progressive traffic flow	Yes
Signal will not seriously disrupt progressive traffic flow Trials of other remedies have failed to reduce delays	No
	=====

>> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1515	1615	1130	1415	1315	945	800	1230	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	177	174	143	140	133	117	87	86	-
Minor Regrmt	81	80	124	98	125	148	96	205	<
Warrant Met?	Yes	Yes	Yes	Yes	Yes	No	No	No	4
=========	=====	=====	=====	=====	======	=====	=====	=====	====
Number of 1-hour periods meeting the warrant									5

Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 2 IS MET <<

Warrant 3A Analysis - Peak Hour Delay

I

=========	=====	=====	=====	=====	=====	=====	=====	=====	=====
Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	177	174	140	133	127	124	117	87	100
Total Volume	1383	1383	1159	1042	1021	1006	954	1133	800
Warrant Met?	Yes	No	1						
=========	=====	=====	=====	=====	=====	=====	=====	=====	====

Number of 1-hour periods meeting the warrant 7 Signal will not seriously disrupt progressive traffic flow Yes Delay for worst minor approach (must be at least 4 veh-hours) 0

>> WARRANT 3A IS NOT MET <<

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 SRZ

07/08/04 16:41:21

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant	3в	Analysi	s -	-	Peak	Hour	∨olume
---------	----	---------	-----	---	------	------	--------

Start Time	1615	1500	1400	1145	945	1300	1045	800	Req.
========	====	====	====	====	====	====	====	====	====
Minor Volume	174	169	162	146	117	111	89	87	-
Minor Regrmt	149	159	208	235	270	240	252	197	<
Warrant Met?	Yes	Yes	No	No	No	No	No	No	1
=========	=====	=====	=====	=====	=====	=====	=====	=====	====
Number of 1-hour periods meeting the warrant									2
Signal will n	ot ser	iously	disru	pt pro	gressi	ve tra	ffic f	low	Yes

>> WARRANT 3B IS MET <<

Warrant 7 Analysis - Crash Experience

80% of Warrant 1A or 1B is met	Yes
Signal will not seriously disrupt progressive traffic flow Trials of other remedies have failed to reduce accidents	Yes
Trials of other remedies have failed to reduce accidents	No
Number of correctable accidents (must be 5 or more per year)	0

>> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

	=======									
Warrant 1A 8-Hour Minimum Vehicular Volume	NOT MET									
Warrant 1B 8-Hour Interruption of Continuous Traffic	MET									
Warrant 1C 8-Hour Combination of Warrants	NOT MET									
Warrant 2 4-Hour Vehicular Volume	MET									
Warrant 3A Peak Hour Delay	NOT MET									
Warrant 3B Peak Hour Volume	MET									
Warrant 7 Crash Experience	NOT MET									

>> Traffic Signal Warrant is MET <<

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant A Analysis - Interim Measure for Signal

______ If signal warrants are met, a temporary multi-way stop is allowed ______ >> WARRANT A IS MET <<

Warrant B Analysis - Crash Experience

I

_____ Number of correctable accidents (must be 5 or more per year) 0 _____ >> WARRANT B IS NOT MET <<

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 Page 3

07/08/04 16:41:21 WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant C An	alysis	- 8-н	our Mi	nimum	Vehicu	lar Vo	1ume		
Start Time	1515	1630	1400	1130	945 ====	1230	800	1045	Req.
Minor Volume Major Volume Warrant Met?	194 1189 No	186 1195 No	165 990 No	158 906 No	131 823 No	130 832 No	106 1027 No	65 649 No	200 300 8
									142 951 0
					>> W	ARRANT	C IS	NOT M	ET <<
Warrant D An	alysis	- 8-н	our Co	mbinat	ion of	Warra	nts =====		
Start Time	1500 ====	1600	1400	1130	1700 ====	945	1230	800	Req.
Minor Volume Major Volume Warrant Met?	187 1166 Yes	169 1052 Yes	165 990 Yes	158 906 No	145 1152 No	131 823 No	130 832 No	106 1027 No	160 240 8
Average minor volume for 8 highest minor hours 149 Average major volume for 8 highest minor hours 994 Number of correctable accidents (must be 4 or more per year) Delay for all minor approaches (must be at least 24 sec/veh) 0									
					>> W	ARRANT	D IS	NOT M	ET <<
Summary of MU	TCD Mu	lti-wa	y Stop	Warra	nt Ana	lysis			
Warrant A Interim Measure for Signal MET Warrant B Crash Experience NOT MET Warrant C 8-Hour Minimum Vehicular Volume NOT MET Warrant D 8-Hour Combination of Warrants NOT MET									
				>> Mul	ti-way	Stop	Warran	t is M	ET <<

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 SRZ

06/17/04 12:28:50

WARRANTS/TEAPAC[Ver 2.02.14] - MUTCD Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1A	Analysis	_	8-Hour	Minimum	Vehicular	Volume
wallant IA	Allalysis		o noui	MITTER THE	veniculai	vo i unic

=========	:=====	=====	=====	=====	=====	=====	=====	=====	=====	
Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.	
=========	====	====	====	====	====	====	====	====	====	
Minor Volume	177	174	140	133	127	124	117	87	105	
Major Volume	1189	1205	1014	899	881	868	823	1027	350	
Warrant Met?		Yes	Yes	Yes	Yes	Yes	Yes	No	8	
=========	:=====	=====	=====	=====	=====	=====	=====	=====	=====	
Number of 1-hour periods meeting the warrant										
Signal will n	ot ser	iously	disru	pt pro	gressi	ve tra	ffic f	∵low	Yes	

>> WARRANT 1A IS NOT MET <<

Warrant 1B Analys	is - 8-H	our Interri	uption of	Continuous	Traffic

Start Time	1630	1530	1430	1130	1330	1230	1030	930	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	174	171	146	143	138	119	98	95	53
Major Volume	1195	1166	1051	906	944	832	826	870	525
Warrant Met?	Yes	8							

Number of 1-hour periods meeting the warrant 10 Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 1B IS MET <<

Warrant 1A Analysis (80%) - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	1015	915	Req.
========	====	====	====	====	====	====	====	====	====
Minor Volume	177	174	140	133	127	124	100	92	84
Major Volume	1189	1205	1014	899	881	868	821	877	280
Warrant Met?	Yes	8							

Н

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 SR7

06/17/04 12:28:50

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B An	alysis	(80%)) - 8-Ho	ur Ir	nterrupt	ion o	f Cont	inuous	Traf
Start Time	1515	1615	1415	1315	1115	1215	1015	915	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	177	174	140	133	127	124	100	92	42
Major Volume	1189	1205	1014	899	881	868	821	877	420
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
Number of 1-hour periods meeting the warrant (56% allowed)								11	

Warrant 1C Analysis - 8-Hour Combination of Warrants

80% of Warrants 1A and 1B are met (56% allowed)	Yes
Signal will not seriously disrupt progressive traffic flow	Yes
Trials of other remedies have failed to reduce delays	No

>> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	===== 1630	====== 1530	====== 1430	====== 1130	====== 1330	===== 1230	1030	930	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	174	171	146	143	138	119	98	95	-
Minor Reqrmt	60	60	60	60	60	60	60	60	<
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	4
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====
Number of 1-h	our pe	riods	meetin	g the	warran	t			10
Signal will not seriously disrupt progressive traffic flow									Yes
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====

>> WARRANT 2 IS MET <<

Warrant 3A Analysis - Peak Hour Delay

=========	=====	=====	=====	=====	=====	=====	=====	=====	=====
Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	177	174	140	133	127	124	117	87	100
Total Volume	1383	1383	1159	1042	1021	1006	954	1133	800
Warrant Met?	Yes	No	1						

Number of 1-hour periods meeting the warrant 7
Signal will not seriously disrupt progressive traffic flow Yes
Delay for worst minor approach (must be at least 4 veh-hours) 0

>> WARRANT 3A IS NOT MET <<

Η

15---2016 - reduced warrant text.txt Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 SRZ

06/17/04 12:28:50

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant	3в	Analys	is	-	Peak	Hour	Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
=========	====	====	====	====	====	====	====	====	====
Minor Volume	177	174	140	133	127	124	117	87	_
Minor Regrmt	75	75	79	90	95	98	109	79	<
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1
=========	=====	=====	=====	=====	=====	=====	=====	=====	=====
N		مام خص	maa+: n	ممالت		+			0

Number of 1-hour periods meeting the warrant 8
Signal will not seriously disrupt progressive traffic flow Yes

>> WARRANT 3B IS MET <<

Warrant 7 Analysis - Crash Experience

	====
80% of Warrant 1A or 1B is met	Yes
Signal will not seriously disrupt progressive traffic flow Trials of other remedies have failed to reduce accidents	Yes
Trials of other remedies have failed to reduce accidents	No
Number of correctable accidents (must be 5 or more per year)	0

>> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

	_=======	=
Warrant 1A 8-Hour Minimum Vehicular Volume	NOT MET	Γ
Warrant 1B 8-Hour Interruption of Continuous Traffic	MET	Γ
Warrant 1C 8-Hour Combination of Warrants	NOT MET	Γ
Warrant 2 4-Hour Vehicular Volume	MET	Γ
Warrant 3A Peak Hour Delay	NOT MET	Γ
Warrant 3B Peak Hour Volume	MET	Γ
Warrant 7 Crash Experience	NOT MET	Γ
	-======	=

>> Traffic Signal Warrant is MET <<

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant A Analysis - Interim Measure for Signal

If signal warrants are met, a temporary multi-way stop is allowed

>>> WARRANT A IS MET <<

Warrant B Analysis - Crash Experience

>> WA

Н

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday April 2, 2004 Page 3 06/17/04 12:28:50 WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant C Analysis - 8-Hour Minimum Vehicular Volume													
Start Time	1515 ====	1615	1415	1315	1115	1215	945	800	Req.				
Minor Volume Major Volume Warrant Met?	194 1189 Yes	178 1205 Yes	145 1014 Yes	143 899 Yes	140 881 Yes	138 868 No	131 823 No	106 1027 No	140 210 8				
Average minor volume for 8 highest minor hours Average major volume for 8 highest minor hours Delay for all minor approaches (must be at least 30 sec/veh)													
					>> W	ARRANT	CIS	NOT N	ИЕТ <<				
Warrant D Analysis - 8-Hour Combination of Warrants													
Start Time	1500	1600	1400	1130	1700	945	1230	800	Req.				
Minor Volume Major Volume Warrant Met?	187 1166 Yes	169 1052 Yes	165 990 Yes	158 906 No	145 1152 No	131 823 No	130 832 No	106 1027 No	160 240 8				
Average major Number of cor	Average minor volume for 8 highest minor hours 149 Average major volume for 8 highest minor hours 994 Number of correctable accidents (must be 4 or more per year) Delay for all minor approaches (must be at least 24 sec/veh) 0												
			=====	=====	>> W	ARRANT	D IS	NOT N	===== ИЕТ <<				
Summary of MU	TCD Mu	lti-wa	y Stop	Warra	ınt Ana	lysis							
Warrant A Interim Measure for Signal MET Warrant B Crash Experience NOT MET Warrant C 8-Hour Minimum Vehicular Volume NOT MET Warrant D 8-Hour Combination of Warrants NOT MET													

>> Multi-way Stop Warrant is MET <<

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBT SBT Close Configurations Close Chorum Cho		•		_		—	•	•	†	<i>></i>	<u> </u>	1	→
Ideal Flow (phplp)	Lana Craun	EDI	FDT	EDD	\VDI	WDT	WIDD	NIDI	NDT	NDD	CDI	CDT	CDD
Ideal Flow (rphp)		EDL		EDK	VVDL		WDK	INDL		NDK	SDL		SDK
Grade (%) 3% 3% 3% 3% 3% 3% 3% 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00		4000		1000	1000		4000	1000		1000	1000		1000
Total Lost Time (s)		1900		1900	1900		1900	1900		1900	1900		1900
Leading Detector (ft)	` '	4.0		4.0	4.0		4.0	4.0		4.0	4.0		4.0
Trailing Detector (ft)				4.0			4.0			4.0			4.0
Turning Speed (mph)													
Lane Util. Factor	` ,		U	0		U	0		U	0		U	0
Fit			1 00			1 00			1.00			1.00	
Fit Protected		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Satic Flow (prot) 0 1602 0 0 1768 0 0 1721 0 0 1736 0												0.912	
Fit Permitted		0		0	0		0	0		0	0	1736	0
Satd. Flow (perm)		U		U	U		U	U		U	U		U
Right Turn on Red Yes Yes Yes Yes 339		0		0	0		0	0		0	0		0
Said, Flow (RTOR)		U	1404		U	1090		U	1319		U	1734	
Headway Factor			23	163		2	163		2	163		30	163
Link Speed (mph) 40 40 40 50 50 Link Distance (ft) 1424 1464 1327 1392 Travel Time (s) 24.3 25.0 18.1 19.0 Volume (vph) 41 2 22 5 7 2 35 328 6 2 540 140 Peak Hour Factor 0.95		1.02		1 02	1 02		1 02	1 02		1 02	0.08		0.08
Link Distance (ft) 1424 1464 1327 1392 Travel Time (s) 24.3 25.0 18.1 19.0 Volume (vph) 41 2 22 5 7 2 35 328 6 2 540 140 Peak Hour Factor 0.95		1.02		1.02	1.02		1.02	1.02		1.02	0.30		0.90
Travel Time (s)													
Volume (vph) 41 2 22 5 7 2 35 328 6 2 540 140 Peak Hour Factor 0.95													
Peak Hour Factor 0.95		/11		22	5		2	35		6	2		140
Heavy Vehicles (%)	\ ! /												
Adj. Flow (vph) 43 2 23 5 7 2 37 345 6 2 568 147 Lane Group Flow (vph) 0 68 0 0 144 0 0 388 0 0 717 0 Turn Type Perm 6 - - 6 - - - 6 -													
Lane Group Flow (vph)	. ,												
Turn Type Perm	• • • • •												
Protected Phases			00	U		17	U		300	U		7 1 7	U
Permitted Phases 4 8 2 6 Detector Phases 4 4 8 8 2 2 6 6 Minimum Initial (s) 4.0 0.0 0.0 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0		1 Cilli	1		1 Cilli	8		1 Cilli	2		1 Cilli	6	
Detector Phases 4 4 8 8 2 2 6 6 Minimum Initial (s) 4.0 40.0 20.0 40.0 <td></td> <td>4</td> <td></td> <td></td> <td>8</td> <td>U</td> <td></td> <td>2</td> <td></td> <td></td> <td>6</td> <td>U</td> <td></td>		4			8	U		2			6	U	
Minimum Initial (s) 4.0 20.0 40.0 50.0 50.0			4			8			2			6	
Minimum Split (s) 20.0 40.0 67% 67% 67% 67% 67% 67% 67% 0% 67% 67% 0% 67% 67% 0% 50% 50% 50% 50% 50% 50% 50%													
Total Split (s) 20.0 20.0 20.0 20.0 20.0 20.0 40.0 67% 67% 67% 67% 0% 67% 67% 0% 67% 0% 67% 0% 67% 0% 50 0 50 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 <td></td>													
Total Split (%) 33% 33% 0% 33% 33% 0% 67% 67% 0% 67% 0% Yellow Time (s) 3.5				0.0			0.0			0.0			0.0
Yellow Time (s) 3.5													
All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Lead/Lag Lead-Lag Optimize? Recall Mode None None None None Min Min Min Min Min Act Effet Green (s) 9.0 61.6 61.6 Actuated g/C Ratio 0.11 0.11 0.82 0.82 v/c Ratio 0.38 0.07 0.30 0.50 Uniform Delay, d1 21.2 26.7 2.0 2.4 Delay 11.5 14.2 2.8 3.4 LOS B B B A A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B B A A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312				070			0 70			0 70			070
Lead-Lag Optimize? Recall Mode None None None Min M													
Lead-Lag Optimize? Recall Mode None None None Min Mi		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode None None None Min Min Min Min Act Effct Green (s) 9.0 9.0 61.6 61.6 Actuated g/C Ratio 0.11 0.11 0.82 0.82 v/c Ratio 0.38 0.07 0.30 0.50 Uniform Delay, d1 21.2 26.7 2.0 2.4 Delay 11.5 14.2 2.8 3.4 LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Act Effct Green (s) 9.0 9.0 61.6 61.6 Actuated g/C Ratio 0.11 0.11 0.82 0.82 v/c Ratio 0.38 0.07 0.30 0.50 Uniform Delay, d1 21.2 26.7 2.0 2.4 Delay 11.5 14.2 2.8 3.4 LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312		None	None		None	None		Min	Min		Min	Min	
Actuated g/C Ratio 0.11 0.11 0.82 0.82 v/c Ratio 0.38 0.07 0.30 0.50 Uniform Delay, d1 21.2 26.7 2.0 2.4 Delay 11.5 14.2 2.8 3.4 LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
v/c Ratio 0.38 0.07 0.30 0.50 Uniform Delay, d1 21.2 26.7 2.0 2.4 Delay 11.5 14.2 2.8 3.4 LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312	` ,												
Uniform Delay, d1 21.2 26.7 2.0 2.4 Delay 11.5 14.2 2.8 3.4 LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Delay 11.5 14.2 2.8 3.4 LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
LOS B B A A Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Approach Delay 11.5 14.2 2.8 3.4 Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Approach LOS B B A A Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Queue Length 50th (ft) 15 4 23 51 Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Queue Length 95th (ft) 41 16 63 140 Internal Link Dist (ft) 1344 1384 1247 1312													
Internal Link Dist (ft) 1344 1384 1247 1312													
OULL OF PIOUR THIO 1701	50th Up Block Time (%)		.011			.00 !						.012	

K:\6330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro\#6330030 AM 2006.sy6 **២៤៤៩៤៤** SOUT-ST51

	۶	→	•	•	+	•	1	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		3%			3%			3%			-3%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.964			0.946						0.981	
Flt Protected		0.968			0.993			0.998			0.999	
Satd. Flow (prot)	0	1617	0	0	1724	0	0	1729	0	0	1750	0
Flt Permitted		0.798			0.972			0.980			0.995	
Satd. Flow (perm)	0	1333	0	0	1687	0	0	1698	0	0	1743	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		33			6						24	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	112	11	45	2	7	6	20	591	0	6	432	71
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	8%	8%	8%	2%	2%	2%	8%	8%	8%	8%	8%	8%
Adj. Flow (vph)	118	12	47	2	7	6	21	622	0	6	455	75
Lane Group Flow (vph)	0	177	0	0	15	0	0	643	0	0	536	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	35.0	35.0	0.0	35.0	35.0	0.0
Total Split (%)	36%	36%	0%	36%	36%	0%	64%	64%	0%	64%	64%	0%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		11.3			11.3			34.2			34.2	
Actuated g/C Ratio		0.21			0.21			0.66			0.66	
v/c Ratio		0.58			0.04			0.57			0.46	
Uniform Delay, d1		15.3			10.1			5.1			4.3	
Delay		11.5			10.9			7.0			5.8	
LOS		В			В			Α			Α	
Approach Delay		11.5			10.9			7.0			5.8	
Approach LOS		В			В			Α			A	
Queue Length 50th (ft)		27			2			83			45	
Queue Length 95th (ft)		84			13			230			139	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (%)		.017			.007			11			.012	
55th 6p 2156k Time (70)												

	•		$\overline{}$		-	•	•	•		<u></u>	ı	٦
		→	*	₹		`	-7	ı	7	•	*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			- 4			4			- 4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		3%			3%			3%			-3%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.964			0.986						0.965	
Flt Protected		0.968			0.988			0.997				
Satd. Flow (prot)	0	1617	0	0	1787	0	0	1728	0	0	1723	0
Flt Permitted		0.781			0.916			0.924			0.994	
Satd. Flow (perm)	0	1305	0	0	1657	0	0	1601	0	0	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		29			3						40	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	268	24	107	7	17	3	50	690	0	7	504	180
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	8%	8%	8%	2%	2%	2%	8%	8%	8%	8%	8%	8%
Adj. Flow (vph)	282	25	113	7	18	3	53	726	0	7	531	189
Lane Group Flow (vph)	0	420	0	0	28	0	0	779	0	0	727	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	28.0	28.0	0.0	28.0	28.0	0.0	42.0	42.0	0.0	42.0	42.0	0.0
Total Split (%)	40%	40%	0%	40%	40%	0%	60%	60%	0%	60%	60%	0%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		22.0			22.0			34.6			34.6	
Actuated g/C Ratio		0.34			0.34			0.53			0.53	
v/c Ratio		0.91			0.05			0.91			0.78	
Uniform Delay, d1		18.8			12.7			13.6			11.2	
Delay		35.3			14.4			22.5			13.2	
LOS		D			В			С			В	
Approach Delay		35.3			14.4			22.5			13.2	
Approach LOS		D			В			С			В	
Queue Length 50th (ft)		159			7			275			192	
Queue Length 95th (ft)		#327			23			#516			323	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (%)												

K:\6330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro\#6330030 PM 2016 w dev vol and no LTL.sy6

Splits and Phases: 3: Happy & US Rt 7

	•		_		—	•	•	†	<i>></i>	<u> </u>	1	→
Lana Craun	EBL	EBT	EBR	\VDI	WDT	WIDD	NBL	NDT	NDD	SBL	SBT	CDD
Lane Group	EDL		EDK	WBL	WBT	WBR	INDL	NBT	NBR	SDL		SBR
Lane Configurations	1000	4000	1000	1000	4000	4000	4000	4000	1000	1900	4000	1000
Ideal Flow (vphpl)	1900	1900 3%	1900	1900	1900 3%	1900	1900	1900 3%	1900	1900	1900 -3%	1900
Grade (%)	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Total Lost Time (s) Leading Detector (ft)	4.0 50	4.0 50	4.0	4.0 50	50	4.0	4.0 50	50	4.0	4.0 50	50	4.0
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15	U	9	15	U	9	15	U	9	15	U	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.954	1.00	1.00	0.982	1.00	1.00	0.998	1.00	1.00	0.960	1.00
Flt Protected		0.970			0.987			0.994			0.900	
Satd. Flow (prot)	0	1604	0	0	1778	0	0	1719	0	0	1714	0
Flt Permitted	U	0.826	U	U	0.946	U	U	0.842	U	U	0.999	U
Satd. Flow (perm)	0	1366	0	0	1704	0	0	1456	0	0	1713	0
Right Turn on Red	U	1300	Yes	U	1704	Yes	U	1430	Yes	U	1713	Yes
Satd. Flow (RTOR)		37	163		3	163		2	163		63	163
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)	1.02	40	1.02	1.02	40	1.02	1.02	50	1.02	0.30	50	0.30
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	65	4	35	6	13	3	53	383	7	3	631	266
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	8%	8%	8%	2%	2%	2%	8%	8%	8%	8%	8%	8%
Adj. Flow (vph)	68	4	37	6	14	3	56	403	7	3	664	280
Lane Group Flow (vph)	0	109	0	0	23	0	0	466	0	0	947	0
Turn Type	Perm	100	U	Perm	20	U	Perm	400	U	Perm	547	O
Protected Phases	1 01111	4		1 01111	8		T CITII	2		1 01111	6	
Permitted Phases	4	•		8			2	_		6	U	
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	40.0	40.0	0.0	40.0	40.0	0.0
Total Split (%)	33%	33%	0%	33%	33%	0%	67%	67%	0%	67%	67%	0%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		10.1			10.1			57.5			57.5	
Actuated g/C Ratio		0.13			0.13			0.77			0.77	
v/c Ratio		0.51			0.10			0.41			0.71	
Uniform Delay, d1		19.9			25.0			2.9			4.0	
Delay		13.4			16.6			4.0			9.7	
LOS		В			В			A			Α	
Approach Delay		13.4			16.6			4.0			9.7	
Approach LOS		В			В			Α			Α	
Queue Length 50th (ft)		25			7			36			99	
Queue Length 95th (ft)		56			20			106			#478	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (%)												

K:\6330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro\#6330030 AM 2016 w dev vol and no LTL.sy6

Splits and Phases: 3: Happy & US Rt 7

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>			4			4			4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		3%			3%			3%			-3%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.982			0.998			0.960	
Flt Protected	0.950				0.987			0.994				
Satd. Flow (prot)	1646	1499	0	0	1778	0	0	1719	0	0	1714	0
Flt Permitted	0.742				0.956			0.842			0.999	
Satd. Flow (perm)	1286	1499	0	0	1722	0	0	1456	0	0	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		37			3			2			63	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	65	4	35	6	13	3	53	383	7	3	631	266
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	8%	8%	8%	2%	2%	2%	8%	8%	8%	8%	8%	8%
Adj. Flow (vph)	68	4	37	6	14	3	56	403	7	3	664	280
Lane Group Flow (vph)	68	41	0	0	23	0	0	466	0	0	947	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	40.0	40.0	0.0	40.0	40.0	0.0
Total Split (%)	33%	33%	0%	33%	33%	0%	67%	67%	0%	67%	67%	0%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)	9.9	9.9			9.7			61.0			61.0	
Actuated g/C Ratio	0.13	0.13			0.12			0.81			0.81	
v/c Ratio	0.42	0.19			0.11			0.39			0.67	
Uniform Delay, d1	32.1	3.0			26.7			2.4			3.3	
Delay	19.4	8.2			16.8			3.5			8.5	
LOS	В	A			В			Α			Α	
Approach Delay		15.1			16.8			3.5			8.5	
Approach LOS		В			В			A			A	
Queue Length 50th (ft)	24	1			7			36			98	
Queue Length 95th (ft)	48	21			20			98			#465	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (%))											

K:\6330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro\#6330030 AM 2016 with dev volumes.sy6

Splits and Phases: 3: Happy & US Rt 7

	•		$\overline{}$		—	•	•	†	<i>></i>	<u> </u>	1	1
I O		- FDT	EDD	▼ \//DI	WOT	\\/DD	ND!	NDT	/	CDI	CDT	CDD
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4000	1000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	4.0	3%	4.0	4.0	3%	4.0	4.0	3%	4.0	4.0	-3%	4.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0	0	0	0	0	0 15	0	9	0	0	0
Turning Speed (mph)	15	1.00	9	15	1.00	9		1.00		15	1.00	1.00
Lane Util. Factor Frt	1.00	1.00 0.877	1.00	1.00	1.00 0.986	1.00	1.00	1.00	1.00	1.00	1.00 0.965	1.00
Flt Protected	0.950	0.077			0.988			0.997			0.963	
Satd. Flow (prot)	1646	1520	0	0	1787	0	0	1728	0	0	1723	0
Flt Permitted	0.739	1320	U	U	0.944	U	U	0.925	U	U	0.994	U
Satd. Flow (perm)	1281	1520	0	0	1708	0	0	1603	0	0	1713	0
Right Turn on Red	1201	1320	Yes	U	1708	Yes	U	1003	Yes	U	1713	Yes
Satd. Flow (RTOR)		113	165		3	165			162		51	162
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)	1.02	40	1.02	1.02	40	1.02	1.02	50	1.02	0.90	50	0.90
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	268	24.3	107	7	25.0	3	50	690	0	7	504	180
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
	8%	8%	8%	2%	2%	2%	8%	8%	8%	8%	8%	8%
Heavy Vehicles (%)	282	25	113	7	18	3	53	726	0%	7	531	189
Adj. Flow (vph) Lane Group Flow (vph)	282	138	0	0	28	0	0	779	0	0	727	0
Turn Type	Perm	130	U	Perm	20	U	Perm	119	U	Perm	121	U
Protected Phases	reiiii	4		reiiii	8		reiiii	2		reiiii	6	
Permitted Phases	4	7		8	0		2	2		6	U	
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	21.0	21.0	0.0	21.0	21.0	0.0	39.0	39.0	0.0	39.0	39.0	0.0
Total Split (%)	35%	35%	0.0	35%	35%	0%	65%	65%	0.0	65%	65%	0%
Yellow Time (s)	3.5	3.5	0 70	3.5	3.5	0 70	3.5	3.5	0 70	3.5	3.5	0 70
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag	0.0	0.0		0.0	0.0		0.5	0.5		0.0	0.5	
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)	14.8	14.8		140110	14.8		IVIIII	31.8		IVIIII	31.8	
Actuated g/C Ratio	0.27	0.27			0.27			0.58			0.58	
v/c Ratio	0.82	0.28			0.06			0.84			0.71	
Uniform Delay, d1	18.6	2.7			13.1			9.2			7.5	
Delay	26.8	6.0			14.7			14.4			8.6	
LOS	20.0 C	Α			В			В			Α	
Approach Delay	<u> </u>	20.0			14.7			14.4			8.6	
Approach LOS		20.0 B			В			В			A	
Queue Length 50th (ft)	92	6			6			200			131	
Queue Length 95th (ft)	#206	42			22			#432			235	
Internal Link Dist (ft)	π ∠ 00	1344			1384			1247			1312	
50th Up Block Time (%)	\ \	דדטו			1304			1271			1012	
Cour of Diock Time (70)	'											

K:\6330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro\#6330030 PM 2016 with dev volumes.sy6

Splits and Phases: 3: Happy & US Rt 7

2016 AM and PM Rodel Roundabout Analysis with 50% Confidence Level

17:6:04 E (m) L' (m) V (m) RAD (m) PHI (d) DIA (m) GRAD SEP	4.5 10.0 3.9 25.0 30.0 40.0	0 4.20 0 10.00 0 3.60 0 25.00 0 30.00	3.90 25.00 30.00	7 AND 1 4.20 10.00 3.60 25.00 30.00 40.00	EXCHANGE	TI RI TI FI	IME PERIO IME SLICH ESULTS PH IME COST LOW PERIO	E mir ERIOD mir \$/hr DD mir pcu/vel	15 15 15 15 15 15 15 15 15 15 15 15 15 1
LEG NAME RTE 7 NA EXCHANGE RTE 7 SA HAPPY EA	PCU 1.05 1.05 1.05	FLOWS (1st 003 633 035 004 007 383 003 013	1 035 3 053	nd etc 0 0 0 0	1.	00 50 50	0.75 1.3 0.75 1.3 0.75 1.3	125 0.75 125 0.75 125 0.75	FLOW TIME 15 45 75 15 45 75 15 45 75 15 45 75
	1 1		M	ODE 2	I	I			
FLOW	veh	. 858	70	422	21				
CAPACITY	veh		717	1116	946			AVDEL s	5 7.9
AVE DELAY	mins	0.16	0.09	0.09	0.06			LOS	6 A
MAX DELAY	_			0.11	0.08			VEH HRS	· · · · · II
AVE QUEUE			0	1	0			COST	45.0
∥ MAX QUEUE F1mode F2	veh direct		0 CtrlF3r	1 ev F4	0 fact F6s	tats	F8econ	 F9prnt	F10run Esc

2	28:5	5:04				ACR	PC-RTE	7 2	AND	EXCHAN	IGE S	STRE	EΤ								13
E		(m)	4.5	50	4.	20	4.50	4	.20			T	IME	PΕ	RIC	D	n	nin			90
L'	•	(m)	10.0	0 (10.	00	10.00	10	.00			T	IME	SL	ICE	3	n	nin			15
V		(m)	3.9	90	3.	60	3.90	3	.60			R	ESU:	LTS	ΡE	CRIC	DD m	nin	1	. 5	75
∥ RA	AD	(m)	25.0	0 (25.	00	25.00	25	.00			T	IME	CO	ST		\$/	hr	1	.5.	00
∥ PF	ΗI	(d)	30.0	0 (30.	00	30.00	30	.00			F	LOW	PΕ	RIC	D	n	nin	1	. 5	75
DI	IΑ	(m)	40.0	0 (40.	00	40.00	40	.00			F	LOW	ΤY	PΕ	рс	cu/v	eh		Ρ	CU
GF	RAD	SEP		0		0	0		0			F	LOW	PΕ	AK	am/	op/	'pm			PM
LE	EG 1	NAME	PCU	FL	OWS	(1st	exit	2nd	eto	cU)	FLOI	CL		FLO	W R	RATI	[0		FLC)W	TIME
RTE	Ξ 7	NA	1.08		180	504	7	0			1.00	50 50	0.	75	1.1	.25	0.7	5	15	45	75
EXC	CHAI	NGE	1.08		107	24	268	0			1.00	5 50	0.	75	1.1	.25	0.7	5	15	45	75
RTE	Ξ 7	SA	1.08		0	690	50	0			1.00	50 50	0.	75	1.1	.25	0.7	5	15	45	75
HAI	PPY	EA	1.03		7	17	3	0			1.00	50	0.	75	1.1	.25	0.7	75	15	45	75
								MODI	E 2												
FI	LOW		veh	1	6	540	369		685	26	5										
∥ C∄	APAC	CITY	veh	1	12	210	898	1	089	675	5						/DEI	_			7.5
/A	VE I	DELAY	mins	3	0.	10	0.11	0	.15	0.09	9					L	0	S			Α
∥ MZ	X I	DELAY	mins	3	0.	14	0.16	0	.22	0.12	2					VE	EH H	IRS			3.6
/A	VE Ç	QUEUE	veh	1		1	1		2	()					CC	ST	\$		5	3.5
MA	AX (QUEUE	veh	1		1	1		2	()										

2016 AM and PM Rodel Roundabout Analysis with 85% Confidence Level

17:6 E L' V RAD PHI DIA GRAD	:04 (m) (m) (m) (d) (m)	4.5 10.0 3.9 25.0 30.0 40.0	00 90 00 00	10. 3. 25. 30.	20 00 60 00	PC-RTE 4.50 10.00 3.90 25.00 30.00 40.00	4. 10. 3. 25.	.20	EXCHAÌ	NGE S'	TI TI RI TI FI	ET IME PERIO IME SLICI ESULTS PI IME COST LOW PERIO LOW TYPE LOW PEAK	E mi ERIOD mi \$/} OD mi pcu/ve	ln ln 1 ln 1 ln 1	9	00 75 CU
LEG N RTE 7 EXCHAN RTE 7 HAPPY	NA GE SA	PCU 1.05 1.05 1.05 1.05	0 0 0	0WS 103 135 107 103	(1st 631 004 383 013	035 053	2nd 0 0 0 0	etc	U)	1.00 1.00 1.00	85 85 85	0.75 1.	125 0.75 125 0.75 125 0.75	5 15 5 15 5 15	45 45 45	75 75 75 75 75
							MODE	E 2		l	I	l		I		
FLOW CAPAC AVE D MAX D AVE Q MAX Q	ELAY ELAY UEUE UEUE	veh veh mins mins veh veh	1 5 5 1	8 11 0. 0.	08 26 42 4 5	70 582 0.12 0.16 0	0.0	122 981 .11 .15 1	21 811 0.07 0.10	L 7))		F8econ	VEH HE	S S \$	4 68	2.0 B

17:6:04		AC	RPC-RTE	7 AND	EXCHANGE	STREET		23
E (m)	4.5	0 4.20	4.50	4.20		TIME PERI	OD mir	n 90
L' (m)	10.0	0 10.00	10.00	10.00		TIME SLIC	E mir	n 15
V (m)	3.9	0 3.60	3.90	3.60		RESULTS P	ERIOD mir	n 15 75
RAD (m)	25.0	0 25.00	25.00	25.00		TIME COST	\$/h:	r 15.00
PHI (d)	30.0	0 30.00	30.00	30.00		FLOW PERI	OD mir	n 15 75 📗
DIA (m)	40.0	0 40.00	40.00	40.00		FLOW TYPE	pcu/vel	n PCU
GRAD SEP		0 0	0	0		FLOW PEAK	am/op/pr	n PM
LEG NAME	PCU	FLOWS (1s	t exit	2nd eta	cU) FLO	OF CL FLOW	RATIO	FLOW TIME
RTE 7 NA	1.08	180 50	4 7	0	1.0	00 85 0.75 1.	125 0.75	15 45 75
EXCHANGE	1.08	107 2	4 268	0	1.0	00 85 0.75 1.	125 0.75	15 45 75
RTE 7 SA	1.08	0 69	0 50	0	1.0	00 85 0.75 1.	125 0.75	15 45 75
HAPPY EA	1.03	7 1	.7 3	0	1.0	00 85 0.75 1.	125 0.75	15 45 75
	1 1			MODE 2	ļ	1 1		l
FLOW	veh	640	369	685	26			
CAPACITY	veh	1079	766	957	537		AVDEL S	s 10.6
AVE DELAY	mins	0.14	0.15	0.23	0.12		LOS	s в∥
MAX DELAY	mins	0.19	0.22	0.37	0.16		VEH HRS	s 5.1 ∥
AVE QUEUE	veh	. 1	1	3	0		COST	76.2
MAX QUEUE	veh		1	4	0			
F1mode F2	direct	F3peak	CtrlF3	rev F	4fact F6st	tats F8econ	F9prnt	F10run Esc

U.S. 7 / EXCHANGE STREET INTERSECTION TRAFFIC & SAFETY IMPROVEMENT MIDDLEBURY, VT

- Sight Distance Summary -

Stopping Sight Distance (SSD) = brake reaction distance + braking distance

brake reaction distance = distance traversed by the vehicle from the instant the driver sees an object until the brakes are applied

braking distance = the distance needed to stop the vehicle from the instant brake application

```
Stopping Sight Distance @ 50 mph = 425'
With a 3% downgrade = 446'
Stopping Sight Distance @ 40 mph = 305'
(With a 3% downgrade = 315') n/a
```

<u>Decision Sight Distance</u> (DSD) = the sight distance needed for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its potential threat, select an appropriate speed and path, and initiate and complete the maneuver safely and efficiently.

50 mph 40 mph

Stop on rural road = 465'
Stop on rural road = 330'
Stop on urban road = 910'
Stop on urban road = 690'

<u>Intersection Sight Distance (ISD) = Case B1 = Left Turn From Stop on Minor Road</u> <u>Case B = Intersections with Stop Control on the Minor Road</u>

Intersection Sight Distance @ 50 mph = **555'** Intersection Sight Distance @ 40 mph = 445'

NOTE: ISD from a turn on stop should equal the SSD of the other vehicle to have sufficient sight distance to anticipate and avoid collisions.

NOTE: Intersection sight distances should exceed stopping sight distance along major road.

Therefore, 555' (ISD) should equal or exceed 446' (SSD).

^{*}Data is taken from the 2001 AASHTO Green Book. Refer to pgs 112, 115, 116, 655, 665 for the appropriate sight distance tables.

Appendix D – Conceptual Cost Estimates

Middlebury – Exchange Street Cost Estimate Assumptions Project Number 6330030 Middlebury, VT

Written by: MBL, August 3, 2004 Checked by: SRZ, August 10, 2004

1. US Rt. 7/Exchange St./Happy Hollow Rd. Roundabout

Length = 300 ft (south) Length = 200 ft (north) Length = 200 ft (east-west)

Common excavation

- It is assumed that 4' (48") will be excavated on the southern approach for the entire 300' length. Assume 21" of excavation and 8" of excavated pavement for southern approach, the Roundabout area, and the Eastern approach. 29" will be excavated for all earth areas to accommodate for the roundabout construction. Full reconstruction will occur for the Roundabout area, the southern approach (300') and the eastern approach (120').
- For the northern approach, the 200' island will be boxcut. The road will remain as is. The East and West approach islands will be reconstructed with the roundabout area.

Pavement removal - assume the eastern approach pavement is fully removed, reconstructed, graded and paved over, 120' length.

Gravel backfill - assume each quadrant has fill added to it.

Grading - it is assumed that all areas being reconstructed or excavated will need grading. Also in this estimate is grading on each of the shoulders where new topsoil will be placed.

Stone - assume stone will be placed on the reconstructed eastern approach and the new widened roadway areas for the west approach.

Emulsified asphalt - will be located over the entire project area at approximately 2" depth.

Bit pavement - will be located over the east approach and west widened areas.

Curbing will be assumed as follows:

Sloped Granite Curbing at the truck apron and the corners Vertical Granite Curbing on the inside of the roundabout and at the islands.

Assume 2 new drainage pipe extensions (32" dia.) and 2 new headwalls under the roundabout.

The truck apron will be 8" depth of stamped concrete.

4" Topsoil will be assumed. Grading along with seeding, fertilizing and topsoil will extend out to 30' from edge of roadways.

2. US Rt. 7/Exchange St./Happy Hollow Rd. Intersection - Widened Roadways and Signalization

Length = 150 ft (north-south) Length = 300 ft (west) Length = 225 ft (east)

Common excavation - assume none on North and South approaches, 21" on the East Approach with 8" pavement removal and 29" ~7.5' either side of the western approach for the widened roadway. It is assumed that 29" of the existing grassy areas at the intersection corners will be excavated to accommodate for the intersection expansion construction. The 29" includes 5" pavement, and an 18" gravel base. The east approach is widened approximately 10'

Pavement removal - assume the eastern approach is fully reconstructed, graded and paved over.

Gravel backfill - assume each quadrant but the SE area has fill added to it. Also, the west approach, southern area requires regarding of this sloped ditch area.

Grading - it is assumed that all areas being reconstructed or excavated will need grading. Also in this estimate is grading on each of the shoulders where new topsoil will be placed.

Stone - assume stone will be placed on the reconstructed eastern approach and under the new widened roadway areas for the west approach.

Emulsified asphalt - will be located over the entire area at approximately 2" depth.

Bit pavement - will be located over the east approach and west widened areas.

Vertical granite curbing will be assumed as follows:

Vertical Granite Curbing at the NW corner of the intersection to define shoulders for trucks.

Assume 2 new drainage pipe extensions (32" dia., 15' long) and 2 new headwalls.

4" Topsoil will be assumed. Grading along with seeding, fertilizing and topsoil will extend out to 30' from edge of roadways.

3. US Rt. 7/Exchange St./Happy Hollow Rd. Intersection With New Signalization (1B)

Assume same as intersection #2, other than the following:

Length = 120 ft (north) Length = 150 ft (south) Length = 300 ft (west) Length = 120 ft (east)

East approach is not widened but it will be fully reconstructed.

Assume new drainage pipe extensions for both sides, for cost estimation only.

The southeastern and northeastern corners will not be widened; the radius will remain as is.

US Rt 7 - Exchange St. Intersection Project Number 6330030

Calculated by: GAE Sept 27, 2004 Checked by: SRZ Aug 10 2004

NOTE: Property Impacts, ROW acquisition, and design services not included.

Intersection Alternatives Middlebury, VT 8/10/2004

Signalized Intersection with Widened Roadways											
Item	Pay Item	Units	U	nit Cost	Quantity	T	otal Cost				
Removal Items											
Common Excavation	203.15	CY	\$	10	893	\$	8,930				
Pavement Removal	203.28	CY	\$	15	89	\$	1,335				
New Items											
Gravel Backfill for Slope Stabilization	203.35	CY	\$	12	1067	\$	12,804				
Fine Grading - Subbase	203.4	SY	\$	1	6539	\$	6,539				
Subbase of DGC Stone	301.35	CY	\$	16	686	\$	10,976				
Emulsified Asphalt	404.65	Ton	\$	30	497	\$	14,910				
Bituminous Pavement	406.25	Ton	\$	45	431	\$	19,395				
Vertical Granite Curb	616.21	LF	\$	25	100	\$	2,500				
Traffic Signals	-	lump sum		-	1	\$	150,000				
New Additional Items											
Pavement Markings: Street (White)	708.08	LF	\$	1.50	1960	\$	2,940				
Pavement Markings: Street (Yellow)	708.08	LF	\$	1.50	3180	\$	4,770				
Pavement Markings: Symbols	646.5	each	\$	51	7	\$	357				
Pavement Markings: Stop Bars	646.46	LF	\$	4	90	\$	360				
Topsoil	651.35	CY	\$	30	400	\$	12,000				
Seed, Fertilizer and Mulch	NA	30% topsoil cost	-	NA	NA	\$	3,960				
Landscaping	NA	total	\$	5,000	1	\$	5,000				
Headwalls	NA	EA	\$	2,000	2	\$	4,000				
32" CMP Pipe	601	LF	\$	60.00	15	\$	900				
		Intersection A									
		Subtotal				\$	261,676				
		Mobilization (10%)				\$	26,168				
		Contingency (25%)				\$	65,419				
		Total				\$	353,000				
		2006 Construction A	dj. (1	0%)		\$	35,300				
		Total				\$	388,000				
		Say				\$	400,000				
		Preliminary Engine	erina	Ī		\$	60,000				
			9	•		·	,				
		R.O.W.				\$	20,000				
		Total				\$	480,000				

US Rt 7 - Exchange St. Intersection Project Number 6330030

Calculated by: GAE Sept 27, 2004 Checked by: SRZ Aug 10 2004

NOTE: Property Impacts, ROW acquisition, and design services not included.

Roundabout							
Item	Pay Item	Units	Į	Jnit Cost	Quantity	Т	otal Cost
Removal Items							
Common Excavation	203.15	CY	\$	10	3131	\$	31,310
Pavement Excavation	203.28	CY	\$	15	607	\$	9,105
New Items							
Gravel Backfill for Slope Stabilization	203.35	CY	\$	12	1263	\$	15,156
Fine Grading - Subbase	203.4	SY	\$	2	10803	\$	21,606
Subbase of DGC Stone	301.35	CY	\$	16	1960	\$	31,360
Emulsified Asphalt	404.65	Ton	\$	30	530	\$	15,900
Bituminous Pavement for Road	406.25	Ton	\$	45	740	\$	33,300
4' Pav't Behind Curbing	406.25	Ton	\$	40	46	\$	1,840
Sloped Granite Curb	616.20	LF	\$	20	658	\$	13,160
Vertical Granite Curb	616.21	LF	\$	25	1173	\$	29,325
Truck Apron: Stamped Concrete	618.11	SY	\$	30	471	\$	14,130
New Additional Items							
Pavement Markings: Street (White)	708.08	LF	\$	1.50	2060	\$	3,090
Pavement Markings: Street (Yellow)	708.08	LF	\$	1.50	3680	\$	5,520
Pavement Markings: Triangles	SRZ#	EA	\$	34	24	\$	816
Topsoil	651.35	CY	\$	30	843	\$	25,290
Seed, Fertilizer and Mulch	NA	30% topsoil cost	-	NA	NA	\$	8,346
Landscaping	-	total	\$	20,000	1	\$	20,000
Headwalls	NA	EA	\$	4,000	2	\$	8,000
32" CMP Pipe	601	LF	\$	60.00	70	\$	4,200
Lighting	-	EA	\$	2,000.00	12	\$	24,000
Misc (10%)				·		\$	50,000
		Roundabout					
		Subtotal				\$	365,454
		Mobilization (10%)				\$	36,545
		Contingency (25%)				\$	91,363
		Total				\$	493,000
		2006 Construction A	dj. (1	0%)		\$	49,300
		Total				\$	542,000
		Say				\$	550,000
		•	orin			¢	
		Preliminary Engine	erini	9		\$	100,000
		R.O.W. (3/4 acre)				\$	60,000
		Total				\$	710,000

Appendix E – Draft Scoping Study Comments

From: Zehler, Stephanie

Sent: Wednesday, September 22, 2004 9:45 AM

To: Edwards, Greg

Subject: FW: US 7/ Exchange Street scoping study

Comments from Dick Hosking regarding US7/Exchange Street, below.

----Original Message----

From: Benjamin, Tammy [mailto:Tammy.Benjamin@state.vt.us]

Sent: Tuesday, September 21, 2004 2:58 PM

To: Zehler, Stephanie **Cc:** Garrett Dague

Subject: FW: US 7/ Exchange Street scoping study

Here are the District Transportation Administrator's comments.

Garrett, I plan on attending the public meeting and will let you know what other VTrans personnel may be attending.

-----Original Message-----From: Hosking, Dick

Sent: Tuesday, September 21, 2004 11:15 AM

To: Benjamin, Tammy; Perkins, John **Cc:** Dill, David; Scott, David; Allen, Chad **Subject:** US 7/ Exchange Street scoping study

I have reviewed the Scoping Study and offer the following comments form the Operations side.

Signals

Under the disadvantages, it is stated that "Continuous maintenance is required for the traffic signal". This is misleading. Our new designs using mast arms and LED signal faces have reduced our maintenance requirements tremendously.

Roundabouts

Add the following under disadvantages

- Winter Maintenance costs for a roundabout can be significantly higher then a conventional intersection. Snow removal in the storm requires that the plow vehicle to circle through the roundabout moving snow to the right which then plugs the intersecting legs which then must be cleaned out. The roundabout will add 10 15 minutes to the time to complete a route. This may reduce the level of service on the remaining parts of the route. Snow removal after the storm may require the removal of snow with loaders and trucks. Snow removal during heavy snow events may require the deployment of special equipment which is located on the other side of town.
- Placing a 20 MPH roundabout in a 50 MPH zone is not desirable.
- Educating drivers on how to use a roundabout is a challenge. Most motorists may feel that US 7 has the right of way when in fact it is the vehicle in the roundabout that has the right of way.

In my opinion, the introduction of a roundabout at this location should only be done if the Class 1 section of US 7 is extended to the north to include this intersection.

From: Benjamin, Tammy [Tammy.Benjamin@state.vt.us]

Sent: Wednesday, September 29, 2004 1:56 PM

To: Edwards, Greg
Cc: Garrett Dague

Subject: FW: Rt. 7/Exchange St. alternatives

Greg, these are other comments by VTrans, too.

-----Original Message-----From: Perkins, John

Sent: Thursday, July 08, 2004 2:20 PM

To: Benjamin, Tammy

Cc: Nyquist, Bruce; Byrne, Bernard

Subject: RE: Rt. 7/Exchange St. alternatives

Is a signal warranted at this location? This location is almost a mile from Middlebury compact limits in a 50 MPH zone. This intersection is too far out to function as a Gateway.

If signal is warranted it should be fully actuated and all left turns will run on a protective phase. The signal shall not be placed on flash during off peak times. The tree clearing on the SW approach is excessive as this signal will not run on flash during off peak times.

You need to state how many acres of wetland will be affected in the roundabout option. The RAB needs to be designed for oversized loads and a WB 67 vehicle as US 7 is a truck rte and our oversized load rte.

We need to see a book on this proposed project.

From: Benjamin, Tammy [Tammy.Benjamin@state.vt.us]

Sent: Wednesday, September 29, 2004 1:58 PM

To: Edwards, Greg
Cc: Garrett Dague

Subject: FW: Exchange St. Mtg. Minutes August 10th

Greg, another comment made earlier on.

-----Original Message-----From: Perkins, John

Sent: Wednesday, September 01, 2004 10:17 AM

To: Benjamin, Tammy

Subject: RE: Exchange St. Mtg. Minutes August 10th

They have something written and we need to see it. I believe that I have seen pieces of it. The cost at 200 K for the RAB is not the 800K we would estimate. This is also a 50MPH zone that is not appropriate for a RAB.

From: Benjamin, Tammy [Tammy.Benjamin@state.vt.us]

Sent: Wednesday, September 29, 2004 1:58 PM

To: Edwards, Greg
Cc: Garrett Dague

Subject: FW: US 7/Exchange Street Intersection Alternatives

Another one. I'm sorry, I should have put these all together for you.

-----Original Message-----From: Perkins, John

Sent: Wednesday, September 15, 2004 9:31 AM

To: Benjamin, Tammy; Nyquist, Bruce

Subject: RE: US 7/Exchange Street Intersection Alternatives

I gave the book to Bruce.

The intersections as designed are way too wide. A WB 67 should be able to get around a 60 foot radius coming from a 12 foot lane and 8 foot shoulder. Move stop bars up. Guard rail for the signal post is needed and is not a problem.

Need to look at pavement limits, if you are not doing anything you don't need to repave.

Emulsified asphalt is a fog coat on existing pavement of .02 gal /sy.

Need to look at ROW costs with RAB. With splitter island to south it looks like you limit access to properties on SW to right in right out.

----Original Message----From: Benjamin, Tammy

Sent: Wednesday, September 15, 2004 8:39 AM

To: Perkins, John

Subject: US 7/Exchange Street Intersection Alternatives

Hi John. Any other comments on the report?