U.S. 7 / Exchange Street Intersection: Traffic and Safety Improvements

Scoping Study

September 29, 2004

Submitted to:

Addison
County
Regional
Planning
Commission

Contents

Introduction 5
Purpose and Need Statement 6
Purpose 6
Need. 6
Project Location 7
Intersection Description 7
Background Information 9
Existing Issues 9
Roadway 9
Community Character 9
Sight Distance 10
Accidents 10
Existing Utilities 10
Right-of-Way 10
Environmental 10
Traffic 11
Traffic Volumes 11
Traffic Analysis Methodology 11
Signal Warrant Performance 12
Signalized Intersection Performance 13
Roundabout Intersection Performance 14
Design Criteria 15
Design Criteria 15
Interim Safety Measures 17
Comprehensive Interim Safety Measures 17
Alternatives Evaluation 18
No Action 18
Advantages 18
Disadvantages 18
Signal Alternative 1A 18
Order of Magnitude of Cost 19
Advantages 19
Disadvantages 19
Signal Alternative 1B 19
Order of Magnitude of Cost 19
Advantages 19
Disadvantages 20
Roundabout Alternative. 20
Order of Magnitude of Cost 20
Roundabout Background Information 20
Advantages 21
Disadvantages 21
Evaluation Matrix 25
Public Meetings 27
Alternatives Presentation - August 10, 2004 27
Public Meetings - September 29, 2004 27
Conclusions and Recommendations 28
Appendix Summary 29
Appendix A - Meeting Minutes
Appendix B - Correspondence
Appendix C - Traffic
Appendix D - Conceptual Cost Estimates
Appendix E - Draft Scoping Study Comments

Introduction

The Transportation Advisory Committee of the Addison County Regional Planning Commission (ACRPC) selected Dufresne-Henry to study the intersection of U.S. Route 7 / Exchange Street and Happy Valley Road. The study reviews existing conditions, determines needs, evaluates alternatives and recommends improvements. Land development and traffic increases have raised delays and safety concerns at this intersection. The following are alternatives evaluated in this report:

No Action
Signal Alternative 1A
Signal Alternative 1B
Roundabout Alternative

Purpose and Need Statement

Purpose

The purpose of the Exchange Street / Happy Valley Road / U.S. 7 Intersection project is to improve the safety and operation of the intersection and enhance the "Gateway to Middlebury."

Need

Currently U.S. 7 is one of Vermont's major north/south transportation corridors that functions as a principle arterial. U.S. 7 is currently the throughway and the two side streets are maintained by stop signs. The following notable issues/deficiencies define the need for improvements:

- Improve sight distance and safety for turning vehicles.
- Reduce delay on Exchange Street approach.
- Accommodate growth of Middlebury and on Exchange Street.
- Provide a gateway to Middlebury.

Project Location

Intersection Description

U.S. Route 7 is one of Vermont's major north / south transportation corridors. It functions as a principle arterial, is state owned and maintained, and has an average annual daily traffic (AADT) of approximately 10,200 vehicles. Exchange Street provides access to the Middlebury industrial area and is an alternative route connecting Middlebury Village and U.S. Route 7 North. The intersection forms the northern gateway to Middlebury. Figure 1 shows the existing project location for this intersection.

Photograph 1: Happy Valley Road, Route 7 and Exchange Street Intersection in Middlebury, Vermont.

Figure 1: Existing Project Location Plan for the Exchange Street / Happy Valley / Route 7 Intersection.

Background Information

Existing Issues

Roadway

This area of U.S. 7 was reconstructed in 1973 by Vermont Agency of Transportation (VTRANS) with 12 foot lanes and 8 foot shoulders. The Route 7 approaches are located on a 5° horizontal curve with approximately 400 ft corner sight distance. The Happy Valley Road approach is an inclined grade with limited sight distance. The posted speed limit is 50 mph on Route 7 and 40 mph on Exchange Street. The U.S. 7 North approach has "intersection ahead" and "trucks entering" posted warning signs.

Community Character

Family homes and nearby businesses are located close to this intersection. The nearby businesses are located in the Middlebury Industrial on Exchange Street, explaining the high percentage of truck traffic (8\%) on this road and on Route 7. Speed, safety and high commuter traffic volumes affect the character of this intersection, the northern gateway of Middlebury. The Bridge School (grades 1-6) on Exchange Street is also located adjacent to the intersection. The intersection area experiences frequent joggers on Exchange Street.

Photograph 2: This photograph was taken looking south on Route 7 at the project intersection.

Sight Distance

The corner sight distance on Exchange Street is approximately 400 feet.
Recommended guidelines (AASHTO) state that 550 feet is appropriate for a speed of 50 mph on the opposing travelway.

Accidents

VTRANS 5 year accident listings indicate one accident in 1997 and one in 1998.

Existing Utilities

The following utilities are known to exist in the project area:

- Gas
- Underground electric
- Sanitary sewer and water
- Overhead power, telephone, cable and a high-voltage transmission line crossing just north of the intersection

Right-of-Way

The U.S. 7 R.O.W. width is approximately 66 feet wide. The R.O.W. on both Exchange Street and Happy Valley's is 50 feet wide. Refer to the plans for a more approximate location of the boundary.

Environmental

There is an adjacent area to the northwest corner that contains a sensitive wetland.

Photograph 3: Turning left from Exchange Street north onto Route 7. The known wetland is located in the left corner of this photograph.

Traffic

Traffic Volumes

A 12-hour traffic count was performed by Dufresne-Henry on April 2, 2004 at the Exchange Street / Happy Valley / Route 7 intersection in Middlebury, Vermont. This count was converted to the year 2006 and 2016 Design Hour Volumes based on the daily variation of a VTrans continuous count station on Route 7. Using this projected data, the following tasks were performed with the results located in the subsequent sections:

- Morning and afternoon traffic data was compiled, and adjusted to obtain Design Hour Volumes (DHV) and Peak Hour Factors (PHF) for the construction (2006) and design years (2016).
- Trip generation volumes for the Industrial Park were conducted and added to the projected 2016 volumes using the ITE Trip Generation Manual and input from the Town of Middlebury.
- MUTCD signal warrants were reviewed for 12 -hour traffic counts using TEAPAC software.
- Signalized intersection performance was analyzed using SYNCHRO software for AM and PM peak hours.
- Roundabout performance was analyzed using RODEL software for AM and PM peak hours.

Traffic Analysis Methodology

The traffic analysis process used for this report is the Highway Capacity Methodology. This practice is a way of comparing intersection congestion at certain times of the day. The level of service (LOS) characterizes the operating conditions of the facility in terms of traffic performance measures related to speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. The levels of service range from level of service A (least congested) to level of service F (most congested).

The following text and tables outline the general definitions of these levels of service for unsignalized, roundabout and signalized intersections.

Level of Service	General operating conditions
A	Free Flow
B	Reasonably Free Flow
C	Stable Flow
D	Approaching unstable flow
E	Unstable Flow
F	Forced or breakdown flow

Unsignalized and Roundabout Level of Service Criteria (sec)					
A	$<\mathrm{OR}=$	10	seconds		
B	$>$	10	and	$<\mathrm{OR}=$	15
C	$>$	15	and	$<\mathrm{OR}=$	25
D	$>$	25	and	$<\mathrm{OR}=$	35
E	$>$	35	and	$<\mathrm{OR}=$	50
F	$>$	50			

*Roundabouts are similar to unsignalized intersections because drivers have higher expectations for lower delay and are less likely to appreciate waiting longer.

Signalized Level of Service Criteria (sec)					
A $<$ OR $=$	10	seconds			
B	$>$	10	and	$<\mathrm{OR}=$	20
C	$>$	20	and	$<\mathrm{OR}=$	35
D	$>$	35	and	$<\mathrm{OR}=$	55
E	$>$	55	and	$<\mathrm{OR}=$	80
F	$>$	80			

Signal Warrant Performance

Signal warrant analysis using TEAPAC software (MUTCD methodology) indicates that a traffic signal is warranted for this intersection in 2006 and in 2016. Reduced signal warrants assume that the intersection is in a built up area of an isolated community with a population of 10,000 or less or speed limit is greater than 40 mph .

Intersection	$\begin{gathered} 2006 \\ \text { Signal } \\ \text { Warrants } \\ \hline \end{gathered}$	2006 Reduced Signal Warrants	2016 Signal Warrants	2016 Reduced Signal Warrants
Exchange Street / Happy Valley / Route 7	No	Yes	Yes	Yes

Signalized Intersection Performance

An optimized intersection signalized analysis using SYNCHRO 6 indicates that overall intersection LOS will be A for 2006 AM \& PM peak hours, A for the 2016 AM peak hour and C for the 2016 PM peak hour. Adding a left-turn lane on Exchange Street will result in an overall intersection LOS of A for 2006 and B for 2016 (see tables below). See attached documents for SYNCHRO analysis output.

Intersection:
Exchange St/Happy Hollow/Route 7

Year 2006 Signalized Capacity Analysis - Level of Service (LOS) and sec of delay		
APPROACH (existing conditions)	AM	PM
EB (Exchange St) Left, Right, \& Thru WB (Happy Hollow) Left, Right, \& Thru	B (12)	B (12)
NB (Rte 7) Left, Right, \& Thru SB (Rte 7) Left, Right, \& Thru Overall Intersection \& Sec Delay	B (14)	B (11)

Year 2016 Signalized Capacity Analysis - Level of Service (LOS) and sec of delay		
APPROACH (without designated LTL)	AM	PM
EB (Exchange St) Left, Right, \& Thru	B (14)	D (35)
WB (Happy Hollow) Left, Right, \& Thru	B (17)	B (15)
NB (Rte 7) \quad Left, Right, \& Thru	A (4)	C (23)
SB (Rte 7) \quad Left, Right, \& Thru Overall Intersection \& Sec Delay	A (10)	B (13)

Year 2016 Signalized Capacity Analysis - Level of Service (LOS) and sec of delay		
APPROACH (with designated LTL)	AM	PM
EB (Exchange St) Left Right, \& Thru WB (Happy Hollow) Left, Right, \& Thru NB (Rte 7) Left, Right, \& Thru SB (Rte 7) Left, Right, \& Thru	B (20)	A (8) (27)
Overall Intersection \& Sec Delay	B (17)	A (6)

Roundabout Intersection Performance

Roundabout capacity analysis using RODEL was performed for the 2016 AM and PM peak hours. The analysis indicates that a roundabout will provide a LOS of A for the 2016 AM \& PM peak hours. See attached documents for RODEL analysis output.

Intersection:
Exchange St/Happy Hollow/Route 7

Year 2016 Roundabout Capacity Analysis - Level of Service (LOS)		
	RODEL AM	RODEL PM
Level of Service	A	A
Average Delay in seconds	7.9	7.5
Approach and Average Queue	NA -2 cars	SA -2 cars

Design Criteria

Design Criteria

The following page organizes the existing and proposed design criteria for this intersection.

Design Criteria

Functional Classification: Principal Arterial (019-3)
Construction Year: 2006
Design Year: 2016

TRAFFIC AND REGULATORY DATA:

TWLT lane (Charles to Mary Hogan North)

2000 AADT:	14,600 (ATR Sta A179, just north of Mary Hogan South)
2015 AADT:	$+6 \%$ (Group II, based on previous 5 yrs)
out (Creek Road)	
2000 AADT:	14,600 (ATR Sta A179)
2015 AADT:	$+6 \%$ (Group II)
\%T	7%

Boulevard (Creek to Boardman)
2000 AADT:
2015 AADT:
13,200 (ATR Sta A011, just north of Boardman St.)
$+18 \%$ (Group III, based on previous 5 yrs at A018)
Turning Movement Volumes: use 1998 Corridor Management Study data (adjusted for design year)
Posted Speed Limit:
50 MPH - U.S. Route 7
40 MPH - west of U.S. Route 7
40 MPH - east of U.S. Route 7
Design Speed: same as posted speed (VSS § 3.3)
Clear Zone:
$40 \mathrm{mph}: 16 \mathrm{ft}$. (min.)
$50 \mathrm{mph}: 24 \mathrm{ft}$. (min.)

GEOMETRY:

Driveways	existing	proposed	reference
Width - Residential	varies	$24 \mathrm{ft}$. (max)	VSS B71M
Width - Commercial	varies	40 ft ((max)	
U.S. Route	existing	proposed	reference
Overall roadway width	$42-44 \mathrm{ft}$.	same.	AASHTO 2000
Travel lane width	12 ft .	12 ft .	
Shoulder/bike lane width	8-10 ft.	same	
Curb	none	yes	
Sidewalks/paths	none	none	
Exchange Street	existing	proposed	reference
Overall roadway width	$42-44 \mathrm{ft}$.	same.	AASHTO 2000
Travel lane width	12 ft .	12 ft .	
Shoulder/bike lane width	4 ft .	same	
Curb	none	none	
Sidewalks/paths	none	none	
Happy Hollow Street	existing	proposed	reference
Overall roadway width	$42-44 \mathrm{ft}$.	same.	AASHTO 2000
Travel lane width	12 ft .	12 ft .	
Shoulder/bike lane width	0 ft .	2 ft	
Curb	none	none	
Sidewalks/paths	none	none	
Roundabout	existing	proposed	reference
Overall roadway width	$42-44 \mathrm{ft}$.	varies	FHWA and Wallwork
Travel lane width	12 ft .	n/a	
Circulatory width	n/a	16 ft .	
Shoulder width	8-10 ft.	n/a	
Inscribed circle diameter	n/a	118 ft .	
Design Vehicle	n/a	WB-67 (WB-20)	
Center island diameter	n/a	46 ft .	
Tree belt width	n/a	n/a	
Sidewalk width	n/a	n/a	
Approach speeds	50 MPH (N\&S)	40 MPH (N\&S)	
	40 MPH (W\&E)	same	
Design speed	n/a	20 mph	
Curb	none	yes	

Interim Safety Measures

Comprehensive Interim Safety Measures

Making improvements to a corridor or intersection takes a number of years for the process of identifying funding, obtaining necessary properties, preparing engineering documents and performing construction. With this in mind, the following items are some interim safety measures that may be performed quicker than a larger project may take.

- Reduce speed limit in the area which would require a traffic study and traffic committee approval.
- Place a temporary Traffic Signal.
- Install a flashing blinking yellow and red light at the intersection.
- Add signage stating: caution, intersection ahead, and/or flashing beacon.
- Educate the community on what a roundabout is and how to use one.
- Add lighting to the intersection.
- Widen the road to accommodate a left turning lane on Exchange Street.
- Minimize the shrubbery and grade the south-west corner of the intersection to increase corner sight distance. The land between the road and the overhead utility lines (or existing R.O.W.) could be graded. Regular upkeep rimming the foliage would maintain a safe sight distance here.

Alternatives Evaluation

Three alternatives have been pursued by the Town of Middlebury and the Regional Planning Commission. The following alternatives are described in more detail in the following sections:

No Action
Signal Alternative 1A
Signal Alternative 1B
Roundabout Alternative

No Action

The No Action Alternative is a decision that would end further action following this study for the Exchange Street / Happy Valley / Route 7 intersection improvement. This alternative leaves the intersection in its current condition and it assumes that any normal maintenance would continue.

Advantages

This alternative has no initial cost. This alternative has no construction or related traffic delays.

Disadvantages

This alternative does not satisfy the purpose and need statement for this project. It does nothing to improve the existing known concerns that affect motorists such as the increase in traffic volumes and delay, accommodation of a high percentage of trucks or improving the known sight deficiencies.

Signal Alternative 1A

Proposed improvements are as follows:

- Widen Exchange Street to include left turn lane
- Install actuated signal system
- Increase the corner sight distance on Exchange Street
- Widen and add a striped median on the Happy Valley Approach

Order of Magnitude of Cost

$\$ 480,000$ - This is the cost to improve the Exchange Street / Happy Valley Road / Route 7 intersection and add the stated traffic signals. A plan of this improvement is shown at the end of this section.

Advantages

- This alternative has least cost initially.
- There is less construction and associated disturbance required than a roundabout.
- A signalized intersection is a common installation in the state of Vermont so typical drivers will understand how it functions and how a traffic signal commonly works.
- Safety is improved due to the increased corner sight distance.

Disadvantages

- Periodic maintenance is required for the traffic signal.
- A signalized intersection has a higher number of conflicting traffic movements.
- A signalized intersection has lower potential capacity than the roundabout.
- Signalized intersections have the potential for drivers to run red lights. This is a serious hazard due to the openness of such a design.
- Vehicles can drive at higher speeds when the signal is on the green phase.

Signal Alternative 1B

- Install actuated signal system
- Increase the corner sight distance on Exchange Street
- Widen Exchange Street to include left turn lane
- Maintain existing approach at Happy Valley Road

Order of Magnitude of Cost

$\$ 420,000$ - This is the cost to improve the Exchange Street / Happy Valley Road / Route 7 intersection and add the stated traffic signals.

Advantages

- This alternative is cheaper initially.
- There is less construction and associated disturbance required than a roundabout.
- A signalized intersection is common practice in the state of Vermont so typical drivers will understand how it functions and how a traffic signal commonly works.
- Traffic on all approaches will be safer due to the geometry redesign to line up the east-west lanes. The corner sight distance will be improved on Exchange Street.

Disadvantages

- Periodic maintenance is required for the traffic signal.
- A signalized intersection has a higher number of conflicting traffic movements.
- A signalized intersection has lower potential capacity than the roundabout.
- Signalized intersections have the potential for drivers to run red lights. This is a serious hazard due to the openness of such a design.
- With this geometry, the east-west corridor lanes do not line up.
- Vehicles can drive at higher speeds when the signal is on the green phase.

Roundabout Alternative

- Install a conventional roundabout.
- Establish splitter islands a minimum of 200’ on the Rt. 7 approaches.
- Address the need for a gateway to Middlebury.
- Improve delay to less than the existing condition.

The Roundabout Alternative is designed to slow cars substantially that are traveling north and south on Route 7. This alternative requires the post speed limit and approach speeds be reduced to 40 mph due to the changing characteristics and increase and anticipated development of the area. The estimated average speed through the intersection will be designed for 20 mph . This alternative will provide traffic calming.

Order of Magnitude of Cost

$\$ 710,000$ - This cost includes the improvement of the Happy Valley Road approach, approximate land acquisition costs, regrading of the Route 7 southern approach and of the roundabout intersection area.

Roundabout Background Information

A modern roundabout is a circular traffic intersection that allows for continuous movement of traffic through the intersection at low speeds. These low speeds result in greater efficiency and lower accident rates. Modern roundabouts include these general characteristics:

- Priority is given to the traffic already in the roundabout, as opposed to a traffic circle that gives priority to entering vehicles.
- The design of the roundabout lowers vehicle speeds to a maximum of 20 miles per hour.
- Vehicles entering a roundabout are required to yield to traffic already in the circle.
- All intersection legs are allowed to operate simultaneously, which increases the capacity of the intersection.
- By reducing the number and duration of stops, a roundabout intersection should reduce traffic noise levels, air pollution and vehicle fuel consumption.

Bicyclists traveling in the roundabout can easily merge into a roundabout lane at low speeds, which precludes cars from attempting to pass the bicycle.

Advantages

- Creates and provides a visual and practical traffic calming approach
- Landscaping can be incorporated into the central island of the roundabout and on the raised splitter islands. The resulting design creates a gateway into the Town of Middlebury.
- All intersection legs are allowed to operate simultaneously, which increases the capacity of the intersection.
- Extended splitter island treatments encourage drivers to slow down before reaching the roundabout, effectively achieved through a combination of geometric design and other design treatments.
- A roundabout has a high vehicle capacity and delay is minimized.
- Improves the pedestrian environment by providing splitter islands which act as pedestrian refuges. Pedestrians could cross one lane of traffic at a time as opposed to two or three lanes of traffic in a signalized condition.
- As a result of reducing the number and duration of stops, vehicles are more energy efficient, less air polluting, and reduce traffic noise levels, especially during non-peak hours.
- Fewer and less severe accidents are expected following installation. Typically 39% reduction of total crashes, 76% reduction of injury crashes and 89% reduction of fatal and incapacitating crashes (New York State DOT Roundabout Design Unit, Howard McCulloch, www.highwaysafety.org).

Disadvantages

- Roundabouts have a higher initial cost than a signalized intersection.
- There is low public acceptance before construction.
- Public education may be necessary for smooth transition and proper driver behavior. Many motorists may feel that US 7 has the right-of-way when the vehicle in the roundabout has the right of way.
- Traffic disruptions may be more significant during construction.
- Winter maintenance costs are higher than a conventional intersection.
- A 20 mph roundabout is not desirable in a 50 mph zone. This alternative requires reducing the posted speed on approaches to 40 mph .
- For VTrans acceptance, it may require the Class I section of US 7 be extended to include this intersection.
- It restricts left hand turns to driveway on US 7 south approach.

Figure 2: Signal Alternative 1A Design Plan.

Figure 3: Signal Alternative 1B Design Plan.

Figure 4: Roundabout Alternative Design Plan.

Evaluation Matrix

The future intersection improvement design process will encounter the need for various permits and applications as well as various funding sources. The matrix table, on the following page, summarizes the various impacts expected for the three alternatives.

EXCHANGE STREET / HAPPY VALLEY / ROUTE 7 INTERSECTION EVALUATION MATIX

Public Meetings

Public meetings in association with this study were held that focused on presenting alternatives and soliciting local concerns and comments from the community. These meetings were held in conjunction with the Middlebury Town Selectboard Meetings.

Alternatives Presentation - August 10, 2004

The Town of Middlebury presented an overview of the project history and outlined the purpose of the meeting. Dufresne-Henry provided details on three proposed alternatives for the Exchange Street / Happy Valley / Route 7 intersection. The meeting was attended by local residents, Selectboard members, the consultant and local government officials from the Town.
The purpose of the alternatives presentation was to gather public opinion and to identify their preferred alternative. People from the community, the Board and the Town stated their viewpoints, the vast majority in favor of the roundabout alternative. The Town Selectboard held two votes following the discussion on the alternatives. The first vote was 7-0, stating that the Selectboard identified a critical need of traffic control at this intersection. The second vote was 7-0, stating that the best solution for this need for traffic control is the roundabout alternative. Minutes from this meeting are included in the Appendix. Minutes from meetings prior to this with the Steering Committee are also located in the Appendix.

Public Meetings - September 29, 2004

The purpose of this meeting was to solicit comments on the Draft Scoping Study dated September 7, 2004. This meeting was noticed in the Addison Independent and held as an agenda item of a Middlebury Selectboard meeting. There was no public comment but concerns from the Agency were discussed and are included in Appendix E. Some of these comments are incorporated in the Final Report text. The board of selectmen passed a motion to approve the draft report.

Conclusions and Recommendations

Based on the evaluations of alternatives, public comments, and the endorsement from the Town of Middlebury Selectboard, the staff at the ACRPC and the Town of Middlebury recommend the Roundabout Intersection to move forward to the next phase of the project. It is recognized this Roundabout Alternative costs more and will likely have a longer development process, but provides a greater value in operation, aesthetics and safety.

Appendix Summary

Appendix A: Meeting Minutes

Project Kick-off Mtg. \#1, March 15, 2004
Pre-Alternatives Meeting, July 9, 2004
Alternatives Presentation, August 10, 2004

Appendix B: Correspondence

Phone Log: Mark Smith with Dick Hosking, General Comments and Concerns, March 30, 2004

Appendix C: Traffic

Original Traffic Counts for AM and PM, April 2, 2004
VTrans Special Tube Count, Fax from Maureen Carr, 2004/01/05
Summary Sheet of Original Counts with Truck Percentages, June 2004
Original and Projected 2006, and 2016 Traffic Volumes, June 9, 2004
Industrial Park Expansion, Fax from Fred Dunnington, 5-13-04
Trip Generation of proposed development, from the ITE Trip Generation Handbook, $7^{\text {th }}$ Generation
-Industrial Park, General Office Building and Free-Standing Discount Store
New Development Volume Distributions
Summary of Adjusted Peak Volumes with Added New Development, June 2004
Signal Warrant Output, June 2004
Signal Warrant Analysis Results
Synchro Signalization Analysis Results for 2006 (projected) and 2016 (projected with new development)
Rodel Roundabout Analysis Results for 2016 AM and PM (projected with new development)
Sight Distance Summary, July 29, 2004

Appendix D: Conceptual Cost Estimates

Assumptions for Conceptual Cost Estimate, August 10, 2004
Conceptual Cost Estimate Items of Work, August 10, 2004

Appendix E: Draft Scoping Study Comments

Appendix A - Meeting Minutes

Middlebury Route 7 / Exchange St. Middlebury, VT

Meeting Minutes

Dufresne-Henry, Inc.

55 Green Mountain Drive, P.O. Box 2246
South Burlington, Vermont 05407
Meeting: \quad Project Kick-off - Mtg \#1
Meeting Date: March 15, 2004
Project No.: 6330030
e-mail: firstinitial.lastname@dufresne-henry.com

Team Meeting					
Date	Start	End	Next Meeting	Next Time	Prepared by
$03-15-04$	$2: 00$ PM	$3: 30$ PM	TBD	TBD	Greg Edwards

Attended By		Copies To
Town:	Dan Werner, Fred Dunnington,	All attendees
	Don Keeler, Dean George	VTrans: Dick Hosking, DTA
ACRPC:	Garrett Dague	
State:	Tamsen Benjamin	
DH:	Greg Edwards, Mark Smith	

If content contained within is not complete, accurate, or in context, please notify Dufresne-Henry of such discrepancy within ten (10) days of this record.

Item	Summary of Meeting
Items Discussed	(1scusect 1-1 approximately 1974 by the Vermont Agency of Transportation. Shortly thereafter the Middlebury Industrial Park extended Exchange Street and created the Exchange Street leg of the subject intersection. Over the last 30 years, the Industrial Park has expanded to 45 businesses, Fred Dunnington provided a list of these. The Industrial Park is subject to an Act 250 Permit, thus the plans for expanded use of the individual lots typically require and Act 250 review. In some instances, this has triggered the need for a traffic impact study. To date, significant intersection improvements have not been required due to these developments. The Town does have a concern that eventually the Industrial Park development will be curbed due to the needed improvements at the intersection. These improvements will be borne by this sole development or parcel. A copy of a traffic study associated with a parcel development was provided to Dufresne- Henry (DH). This intersection was also a part of a US Route 7 Corridor Study conducted by the Addison County Regional Planning Commission (ACRPC) in the late 1990’s. DH has a copy of this study and will it will be reviewed and studied in the project development.

Middlebury Route 7 / Exchange St
Middlebury, Vermont

Meeting Minutes
Dufresne-Henry, Inc.
Meeting: Get Start Meeting No. 1
Meeting Date: 03/15/04

1-2	Existing Concerns: Noted concerns include the following: 1. Limited corner site distance on the Exchange Street approach. 2. Limited traffic gaps on US Route 7 during peak periods for traffic entering from the sidelines, particularly for the Exchange Street left turning traffic. 3. Excessive speeds on US Route 7. 4. The potential for severe accidents. 5. Delays or queuing on Exchange Street at shift changes. 6. Significant truck traffic associated with the Industrial Park. 7. Potential for significant development producing additional traffic.
1-3	Existing and Projected Traffic Volumes: DH will conduct a 12 hour turning movement count at the intersection. These volumes will be adjusted using the States daily and seasonal adjustments. Background growth will be developed using adjacent VTrans continuous count stations to account for potential traffic growth due to Industrial Park development. Fred will provide the acreage and zone use for the undeveloped Industrial Park parcels. DH will include the trips generated from this development in the projected traffic volumes.
1-4	Accidents History: DH will obtain an accident listing from VTrans. The Town will request an accident listing from the Middlebury Town Police and forward it to DH.
1-5	Project Schedule: It is anticipated traffic counts will be completed by early April and the survey within the next three to four weeks pending weather conditions. Traffic Analysis completed by April $15^{\text {th }}$ and the signalized and unsignalized intersection and roundabout alternatives will be developed and distributed by May $1^{\text {st }}$ with a review meeting and alternatives presentation to follow.
	Next meeting (\#2) will be approximately in mid-May, TBD.

Middlebury Rt. 7 - Exchange St
Intersection Improvements
Burlington, Vermont

Dufresne-Henry, Inc.
55 Green Mountain Drive, P.O. Box 2246
South Burlington, Vermont 05407
Tel: 802-864-0223 Fax: 802-864-0165
e-mail: firstinitial.lastname@dufresne-henry.com

Meeting: Pre-Alternatives Meeting
Meeting Date: July 9, 2004
Project No.: 6330030

Team Meeting					
Date	Start	End	Next Alt. Meeting with Selectboard	Next Time	Prepared by
$7-9-04$	9:00 a.m.	10:30 a.m.	August 10, 2004	7:00 p.m.	Stephanie Zehler

Attended By		Copies To
Town:	Dan Werner, Fred Dunnington,	Attendees
ACRPC:	Don Keeler, Bill Finger	Town: Dean George
VTrans District 5, DTA		
DH: Dick Hosking	State: Tamsen Benjamin	
Greg Edwards, Mark Smith,		
Stephanie Zehler		

If content contained within is not complete, accurate, or in context, please notify Dufresne-Henry of such discrepancy within ten (10) days of this record.

Item	Summary of Meeting	
Items Discussed	Action/Response	
1	Review Traffic Analysis and Results. Greg Edwards outlined the Purpose and Need Statement regarding the project, discussed the	DH will place a table with the LOS interpretation (delay ranges) and a note of explanation into the report. Level of Service (LOS) at the Exchange St- Seconds of delay will be provided for Route 7 Intersection and explained the signal each approach and DH will consider warrant analysis. Mark Smith explained how the LOS design criteria for a roundabout and a signalized intersection are different.
each alternative.		

Item	Summary of Meeting	
	Items Discussed	Action/Response
2	Review Alternative Plans: Signalized Alternative. Greg Edwards described the elements for an effective signalized alternative pointing out design considerations such as: a. Placing the signal mast poles outside the clear zone to avoid using guardrail b. Potentially lowering the speed limit on Route 7 to improve the stopping sight distance in all directions c. Refining lane geometry d. Adding new mast arm poles for signals e. Explaining the drawing plan of full build versus a minimum build scenario	DH will create a third alternative plan for the Alternatives meeting that takes out the striped island on Happy Valley Road, thereby maintaining the existing approach configuration. This third plan would also allow the signal to be called on demand and add curbing to minimize trucks driving off of the road shoulders. DH will provide corner sight distance line and estimate stopping sight distance for the Happy Valley approach.
3	Review Alternative Plans: Roundabout Alternative. Greg Edwards described the elements and operation of the roundabout then noted the following considerations: a. Since it is under yield control a major advantage to the user and the environment is continuous flow, no stopping. Yield-only is particularly beneficial during off-peak periods. b. Roundabout initial cost is higher than the signal option due to more roadway reconstruction. c. Roundabout promotes less gas consumption, reduces emissions and delay especially during off-peak periods. d. Roundabout slows traffic introducing an entrance to Middlebury urban compact.	Shoulders need to be a minimum of 4' wide for bicyclist use. The design plan with short raised islands may not slow or warn traffic appropriately. The following are adaptations to the islands that would help slow vehicles before they enter the intersection: - longer raised islands - a painted island before the raised deflection islands leading to the roundabout - narrowing and/or deflecting travel lanes It is important to note that before installing a roundabout, extensive roundabout education is required in a new area. This may include a roundabout demonstration, handing out brochures on how drivers must operate, or showing a video of a roundabout in action on public access TV.

| Item | Summary of Meeting |
| :--- | :--- | :--- |

Item	Summary of Meeting	
Items Discussed		Action/Response
D.	How would the roundabout alternative be funded? The signalized alternative?	Roundabout alternative: 80\%-10\%-10\% (Fed-State-Local) Signal Alternative: 100\% (Federal)
E.	What is the cost of each alternative?	The following costs are approximated estimates based on other projects that have been itemized: - Roundabout alternative: $\sim \$ 400,000$ - Signal Alternative: ~\$300,000
F.	What situation does the Roundabout intersection present for pedestrians and bicyclists?	There are very few pedestrians in this location. However, high school teams run up this road. It would be wise to find a way to accommodate pedestrians and bicyclists in the roundabout, perhaps with a shoulder on the other side of the curb. Vehicles are going slower as they maneuver through the roundabout.
G.	Is there curbing for either Alternative?	Yes, there are curbs within the limits of the roundabout alternative. No, there are currently not curbs for the signal alternative. However, it was noted that curbing on the signal alternative would be beneficial to denote the shoulder for trucks.
H.	Have the wetlands been delineated?	The wetlands have not been delineated. Note that a manmade drainage ditch is not a wetland and is not required to have a permit. Extending a culvert requires a permit. Impact areas over 3000 square feet require a VSCOE.
I.	Do we need additional right-of-way for both of these Alternatives?	Yes, additional right-of-way is needed for both Alternatives for any physical changes to the intersection. The town may wish to obtain the triangular piece of property currently owned by a doctors' office to assist with reconstructing the intersection.

Item	Summary of Meeting	
Items Discussed		Action/Response
J.	Could someone get a plow template (17' wide) and run this through the roundabout design to see the anticipated effect?	Yes, DH can refer to the Autoturn program for a plow template.
K.	What is needed to warrant a flashing beacon?	Traffic accidents and traffic volumes.
L.	Who will attend this Alternatives Meeting?	Consensus from people of which alternative is preferred will most likely come from: \bullet
• School		
• Industrial Park		
\bullet	Happy Valley Road Residents	

Middlebury Route 7 / Exchange St. Middlebury, VT

Meeting Minutes

Dufresne-Henry, Inc.

55 Green Mountain Drive, P.O. Box 2246
South Burlington, Vermont 05407
Meeting: Alternatives Presentation
Meeting Date: August 10, 2004
Project No.:
6330030
Tel: 802-864-0223 Fax: 802-864-0165
e-mail: firstinitial.lastname@dufresne-henry.com

Alternatives Presentation Meeting Summary					
Date	Start	End	Next Meeting	Next Time	Prepared by
$8-10-04$	$7: 30 \mathrm{PM}$	$8: 15 \mathrm{PM}$	TBD	TBD	Stephanie Zehler

Attended By	Copies To
Middlebury Town Selectboard	Attendees on the committee.
Members of the Public	
Town: Dan Werner, Fred Dunnington,	VTrans: Dick Hosking, DTA
Don Keeler, Dean George	
ACRPC: Garrett Dague DH: Greg Edwards, Stephanie Zehler	State: Tamsen Benjamin

If content contained within is not complete, accurate, or in context, please notify Dufresne-Henry of such discrepancy within ten (10) days of this record.

Item	Summary of Meeting
Items Discussed	1-1 Project History: US Route 7 in the project area was reconstructed and widened in approximately 1974 by the Vermont Agency of Transportation. Shortly thereafter the Middlebury Industrial Park extended Exchange Street and created the Exchange Street leg of the subject intersection. Over the last 30 years, businesses on Exchange Street have grown in number to over 45. The Town does have a concern that eventually the Industrial Park and other Exchange St. business development will be curbed due to the level of service at the Rt. 7 intersection. It is not fair, nor practicable for needed improvements to be borne by the next individual business that is expanding. Dufresne- Henry was hired by the RPC to review this intersection and provide intersection improvement alternatives for the Town to discuss with the State.

Middlebury Route 7 / Exchange St
Middlebury, Vermont

Meeting Minutes
Dufresne-Henry, Inc.
Meeting: Alternatives Presentation
Meeting Date: 8-10-04

$1-2$	
	PURPOSE: Improve the Safety and Operation of the Intersection and Enhance the "Gateway to Middlebury."
1 NEEDS:	

Middlebury Route 7 / Exchange St
Middlebury, Vermont

Meeting Minutes
Dufresne-Henry, Inc.
Meeting: Alternatives Presentation
Meeting Date: 8-10-04

$1-7$	Operations: Accidents Enaintenance Public acceptance/education
$1-8$	Cost: $1-9$ Conginenering Chief Hanley - He supports the roundabout, this is a great spot for one. There may be runners and joggers at this location, but these people would not stop for a pedestrian phase at a signal. A large reason for not having a signal is the impatience that drivers have while waiting. It is best for vehicles to travel slowly; this is the best method for traffic calming. I am not supportive of any type of signalization. The roundabout is clearly the best alternative. Dean George - He is a strong advocate for roundabouts. Since the 1990's, the roundabout alternative has been supported at this location. One concern is although the AOT has supported this alternative in the past, now it may not be so well supported by the current District Administrator. The roundabout is a fantastic way to solve a lot of problems here. Don Keeler - When we discussed this option at the last meeting, AOT funding sounded like it was more readily available for a signal than for a roundabout alternative. Fred Dunnington - The Board will need to lobby in Montpelier for its preferred alternative. Bill Perkins - We will have to put pressure on Montpelier to make this happen. I have seen roundabouts around the world; in England they work great and here in Vermont too.

Middlebury Route 7 / Exchange St
Middlebury, Vermont

Meeting Minutes
Dufresne-Henry, Inc.
Meeting: Alternatives Presentation
Meeting Date: 8-10-04

$1-9$	Don Keeler - There are lots of joggers in this area that come up from Exchange Street. Bill Perkins - Probably 20 joggers a day. Dean George - With speeds of 20mph, it is easier to deal with pedestrians. Fred Dunnington - With the roundabout alternative, one only has to cross one travel lane at a time. With the signal alternative, pedestrians have to cross two or three travel lanes to cross RT 7. Charlotte Tate - The roundabout alternative gives me a warm feeling to have this type of entryway with so much green space. Someone could maintain that center space with nice plantings and really make a nice entrance to the Town. Don Keeler - We do already have slope rights on the corners. (Other - But we will still need to acquire property rights for either alternative.) Fred Dunnington - If AOT provided funding more readily for signals and the preferred roundabout was only to be funded at a more distant future date, would the SelectBoard wait? What does the Selectboard see as the urgency of this Intersection? John Tenny - The Town should start with the property acquisition. Fred Dunnigton - The state property acquisition process should be used in this matter. But, yes, we can start talking with property owners now. John Tenny - See the needs of the project and talk with property owners. Don Keeler - We know the signal is going to work. The roundabout is nice. But look at the funding associated with this. AOT states that roundabouts can cost much more than a signalized intersection. Peg Martin - Roundabouts work very well in other spots such as Montpelier and Brattleboro. She prefers to push for the roundabout. The intersection is never going to change if you put a signal there. Greg Edwards - AOT has typically supported roundabouts in urban areas with slower speeds such as Montpelier, Manchester, Harford and Middlebury. This area around Exchange Street-Route 7 is going to be more developed in 20 years. Roundabouts in higher speed locations is an issue and requires careful consideration.

Middlebury Route 7 / Exchange St
Middlebury, Vermont

Meeting Minutes
Dufresne-Henry, Inc.
Meeting: Alternatives Presentation
Meeting Date: 8-10-04
\(\left.$$
\begin{array}{|c|l|}\hline \text { 1-9 } & \begin{array}{l}\text { Dean George - There are people at the AOT who support roundabouts, not everyone in } \\
\text { AOT has reservations with them there. } \\
\text { Public comment- Why is this particular spot been chosen for a roundabout and not the } \\
\text { southern gateway? } \\
\text { John Tenny - The funding for the southern project is not certain. At the Exchange } \\
\text { Street-Route 7 Intersection, the traffic numbers are higher, the intersection is already } \\
\text { warranted and there are more businesses moving in. There is growing concern that the } \\
\text { industrial park would not be able to grow and/or would halt due to this intersection not } \\
\text { being adequate level of service.. In due time, the Town may lose the opportunity to } \\
\text { choose a traffic control device at this location due to urgency. } \\
\text { Fred Dunnington - What is the urgency of this project to the Town Selectboard versus } \\
\text { the southern roundabouts? } \\
\text { Dean George - They are separate issues. } \\
\text { Peg Martin - The southern roundabouts are a much more expensive project than this } \\
\text { intersection. We can make this work in a discreet manner versus changing a whole } \\
\text { area. } \\
\text { Fred Dunnington - In reality, if the roundabout alternative takes a few more years than } \\
\text { a signalized intersection, who will support this? Peg, John, Bill P. indicated they would. } \\
\text { Don Keeler - This is a dangerous intersection, it is a known problem that we need to do } \\
\text { something soon. } \\
\text { Peg Martin - We can increase the visibility at this location for sure now. } \\
\text { Bill Perkins - Driving this intersection 4-10x a day, there is a lot of impatience of } \\
\text { drivers, as the Chief said earlier. One needs to wait for the proper break in traffic } \\
\text { before you go across. We should clear the trees now. } \\
\text { John Tenny - The proper way to proceed is perhaps with these two actions: }\end{array}
$$

\hline 1-10 The Town Selectboard has identified a critical need of traffic control at this

intersection.

(voted 7-0 in favor)

2) The best solution for this need for traffic control is the roundabout alternative.

(voted 7-0 in favor)\end{array}\right\}\)| Dufresne-Henry will provide the DRAFT Report in the fall of 2004. |
| :--- |

Appendix B-Correspondence

Dufresne-Henry, Inc.
P.O. Box 2246, 1025 Airport Drive

South Burlington, VT 05407
Telephone: (802) 864-0223
Fax: (802) 864-0165
TELEPHONE CONVERSATION LOG

By: Mark Smith
Date: 3-30-04

Individual: Dick Hosking

Project No: 6330030
Time: 9 am

Title: VTrans District 5 DTA

Phone No.: 655-1580

Subject: general comments and concerns for possible intersection improvements at Exchange St. and Rte. 7 in Middlebury

Items Discussed:

Maintainability in winter:
-area of Rte 7 is plowed by a tamdem truck (needs 17 ft . width where curbed both sides)
-small roundabouts are too constrictive for these vehicles
-no left-hand plows for pushing snow to middle of a roundabout are available to DTA
-windrow of snow will be left across Rte 7 approaches to a roundabout
-cleanup after storm requires different equipment than what's available to District
-account for snow melt from center island of roundabout - don't want freezing across road
-may need cooperation from Town for plowing
Need to control speed on Rte 7:
-possibly narrow shoulder on Rte 7 for traffic calming
-roundabout design speed may be 25 mph , but Rte 7 will still dominate - making it hard to get out from
Exchange St.
Traffic:
-problem is only in peak hours
-Rte 7 is part of the state Truck Network - must plan for 53 foot trailers (WB67)
Sight Distance:
-no matter what: remove the mound to the south of intersection (west side)
-for roundabout alternative - must be able to see features clearly from approaches

Comments or Actions Required:

Find a turning template for a tamdem truck with a plow, if possible.

Appendix C - Traffic

VEHICLE TURNING MOVEMENT COUNT
April 2, 2004
Weather: AM- PM-

Trucks	1.59	$\%$
Trailer Trucks	0.00	$\%$
Total Trucks	1.59	$\%$

VEHICLE TURNING MOVEMENT COUNT
Route 7/Exchange St/Happy Valley Rd
Middlebury, VT

April 2, 2004
Weather: AM- PM-

VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd
Middlebury, VT
April 2, 2004

Rt 7 South Approach		10	26	42		$11 \quad 27 \quad 43$				12	28	44						
		Right onto Happy, east				Straight on Rt 7, north				Left onto Exchange, west								
Observer	$\begin{aligned} & 15 \mathrm{~min} \\ & \text { period } \\ & \text { begins } \end{aligned}$	Passenger cars	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	Passenger cars	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes	
D. Draper	6:00	0	0	0		29	1	2		0	0	0		6:00	1	2	32	
	6:15	0	0	0		32	3	2		2	0	0		6:15	3	2	39	
	6:30	1	0	0		61	0	0		3	0	1		6:30	0	1	66	
	6:45	0	0	0		38	2	0		6	2	0		6:45	4	0	48	
	7:00	0	0	0		56	3	1		1	0	1		7:00	3	2	62	
	7:15	0	0	0		63	3	2		6	0	0		7:15	3	2	74	
	7:30	0	0	0		66	3	2		2	0	0		7:30	3	2	73	
	7:45	1	1	0		64	2	0		5	0	0		7:45	3	0	73	PEAK
	8:00	0	1	0		64	2	1		3	3	0		8:00	6	1	74	PEAK
	8:15	1	0	0		58	3	2		8	3	0		8:15	6	2	75	PEAK
	8:30	1	0	0		74	6	2		8	0	0		8:30	6	2	91	PEAK
	8:45	0	0	0		52	4	2		9	0	0		8:45	4	2	67	313
	9:00	0	0	0		44	5	0		3	2	0		9:00	7	0	54	
	9:15	0	0	0		56	7	4		2	1	1		9:15	8	5	71	
	9:30	1	0	0		61	4	5		0	1	1		9:30	5	6	73	
	9:45	0	0	0		61	3	4		3	0	1		9:45	3	5	72	
	10:00	0	0	0		75	2	2		4	0	1		10:00	2	3	84	
	10:15	0	0	0		57	5	3		3	0	0		10:15	5	3	68	
	10:30	1	1	0		55	3	0		1	1	1		10:30	5	1	63	
	10:45	0	0	0		80	9	4		1	1	0		10:45	10	4	95	
	11:00	1	0	0		67	4	1		0	0	1		11:00	4	2	74	
	11:15	0	0	0		79	9	4		2	0	1		11:15	9	5	95	
	11:30	2	0	0		57	2	2		6	0	0		11:30	2	2	69	
	11:45	2	0	0		54	3	5		2	0	0		11:45	3	5	66	
														TOTAL	105	59	1658	
															Trucks	6.33	\%	
															Trailer Trucks	3.56	\%	
															Total Trucks	9.89	\%	

VEHICLE TURNING MOVEMENT COUNT
Route 7/Exchange St/Happy Valley Rd
Middlebury, VT

April 2, 2004
Weather: AM- PM-

VEHICLE TURNING MOVEMENT COUNT Route 7/Exchange St/Happy Valley Rd
Middlebury, VT
April 2, 2004

Trucks	10.91	$\%$
Trailer Trucks	8.26	$\%$
Total Trucks	19.17	$\%$

AM	\# Cars	Truchactor Traial Vehicles		
Page 1	2156	139	65	2360
Page 2	62	1	0	63
Page 3	1494	105	59	1658
Page 4	274	37	28	339

$6 \quad 22$

$7 \quad 23 \quad 39$ | 39 | 8 |
| :--- | :--- | $8 \quad 24 \quad 40$

Rt 7 South Appr		10	26	42		11	27	43		12	28	44						
			ight onto	ppy, east			ght on Rt 7, north			Left on	to Exch	ange, west						
Observer	15 min period begins	$\begin{array}{\|c\|} \hline \text { Passenger } \\ \text { cars } \end{array}$	Truck	Tractor Trailer	Bus	Passenger cars	Tractor Trailers	Truck	Bus	$\begin{array}{c\|} \hline \text { Passenger } \\ \text { cars } \end{array}$	Truck	Tractor Trailer	Bus	15 min period begins	Trucks	Trailer Trucks	Total per 15 minutes	
M. Draper	12:00	1	0	0		75	7	3		4	0	1		6:00	7	4	91	
	12:15	2	0	0		69	9	0		6	0	0		6:15	9	0	86	
	12:30	0	0	0		74	6	3		2	0	0		6:30	6	3	85	
	12:45	1	0	0		65	6	1		4	1	0		6:45	7	1	78	
	13:00	1	0	0		72	5	1		2	0	0		7:00	5	1	81	
	13:15	0	0	0		58	4	1		4	2	0		7:15	6	1	69	
	13:30	0	0	0		78	5	1		3	0	0		7:30	5	1	87	
	13:45	0	0	0		72	5	2		1	2	0		7:45	7	2	82	PEAK
	14:00	1	0	0		83	5	1		4	0	1		8:00	5	2	95	PEAK
	14:15	0	0	0		87	6	3		4	0	0		8:15	6	3	100	PEAK
	14:30	1	0	0		102	2	5		4	0	0		8:30	2	5	114	PEAK
	14:45	1	0	0		89	2	1		4	0	1		8:45	2	2	98	391
	15:00	1	0	0		105	2	1		4	1	0		9:00	3	1	114	PEAK
	15:15	0	0	0		123	3	1		6	0	0		9:15	3	1	133	PEAK
	15:30	0	0	0		132	4	3		3	0	0		9:30	4	3	142	PEAK
	15:45	0	0	0		122	5	0		3	0	1		9:45	5	1	131	PEAK
	16:00	0	0	0		104	2	2		3	1	0		10:00	3	2	112	520
	16:15	0	0	0		98	4	1		1	3	0		10:15	7	1	107	
	16:30	0	0	0		113	2	1		1	0	0		10:30	2	1	117	
	16:45	1	0	0		103	1	0		4	0	0		10:45	1	0	109	
	17:00	2	0	0		138	2	0		1	0	0		11:00	2	0	143	
	17:15	0	0	0		100	4	2		0	0	0		11:15	4	2	106	
	17:30	0	0	0		96	1	1		1	0	0		11:30	1	1	99	
	17:45	0	0	0		82	0	0		0	0	0		11:45	0	0	82	
														TOTAL	102	38	2461	
															Trucks	4.14	\%	
															Trailer Trucks	1.54	\%	
															Total Trucks	5.69	\%	

$16 \quad 32 \quad 48$

PM	\# Cars	\# Trucks	\# Tractor Trailers	Total Vehicles
Page 1	2206	85	57	2348
Page 2	52	1	0	53
Page 3	2321	102	38	2461
Page 4	640	34	27	701

PM	\# Cars	\# Trucks	\# Tractor Trailers	Total Vehicles
Page 1	2206	85	57	2348
Page 2	52	1	0	53
Page 3	2321	102	38	2461
Page 4	640	34	27	701

Trucks	3.99	\%
Trailer Trucks	2.19	\%
Total Trucks	6.18	$\%$

AM	\# Cars	\# Trucks	\# Tractor Trailers	Total Vehicles
Page 1	2156	139	65	2360
Page 2	62	1	0	63
Page 3	1494	105	59	1658
Page 4	274	37	28	339

Trucks	6.38	\%
Trailer Trucks	3.44	$\%$
Total Trucks	9.82	$\%$

	\# Cars	\# Trucks	\# Tractor Trailers	Total Vehicles
TOTAL	9205	504	274	9983

Trucks
Trailer Trucks
Total Trucks
5.05
\%
2.74
\%
7.79
\%

PROGRAM DEVELOPMENT DIVISION FAX COVER SHEET
 (802) 828-2334 FAX NUMBER)

TO: Jon Lenwohl DH
FROM: Maureen Care
DATE: \qquad
SUBJECT: Middlebury Traffic Counts
TOTAL PAGES: \qquad (including this sheet)

COMMENTS: Ion - I an faxing you three Automatic
Traffic Recorder counts done in the UST/Exchangest/ Happy Valley Rd area. * we have not done a turning movement count at that intersection

Give me a call at 828-3091, or e-mail at maureen. Carr a state. vt. us if you have - questions.

Thanks

Run Date：2004／01／05

Vermont Agency of Transportation

$$
\begin{aligned}
& \text { echnical Services Division } \\
& \text { Traffic Research Unit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Traffic Research Unit } \\
& \text { Special Count - Volurne }
\end{aligned}
$$

2001
Town：Middlebury
Final AADT： 2100
Route No：

Site ID：S6A Functional	a48		BAN	LOC	SY	STE							Tow	$\begin{aligned} & \text { n: Mic } \\ & \text { nt Typ } \end{aligned}$	iddleb e：	Volu									Final		$\begin{aligned} & 2100 \\ & \text { NONE } \end{aligned}$		
Location：M	iddle	ury：	xch	ange	1.0	mi	Nof El						Coun	nter T	ype：	Tub										aily			Adj．
Date	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total		MADT	ACF	ol．
$200100 / 26 \mathrm{Wed}^{\text {ed }}$															228	256	262	179	85	47	37	－ 23	8	12	1135	0.93	0.97	0.88	1006
$200109 / 27$ Thu	21	8	0	11	11	54	103	194	275	153	179	191	259	221	232	225	253	188	105	48	19	18	16	21	2804	0.92	0.97	0.98	2470
$2001109 / 28 \mathrm{Fti}$	18	2	2	7	11	56	94	179	230	140	190	203	303	198	201	233	204	173	87	5	35	15	12	18	2668	0.85	0.97	0.88	2176
200109／29 Sal	22	7	2	9	3	9	18	77	80	104	123	131	112	95	109	106	101	67	52	47	18	21	13	4	1329	1.08	0.87	0.98	1349
$2001 / 1 / 890$ Sun	6	2	4	3	4	8	－ 4	21	26	46	58	75	62	61	59	59	84	50	34	27	20	14	5	в	720	1.34	0.87	0.88	920
2001HOW1 Man	5	2	6	4	12	68	${ }^{88}$	${ }^{188}$	268	163	198	198	232	$2!2$	218	285	27.	209	92	40	23	13	7	21	2795	0.95	0.85	0.98	2503
2003／1002 Tue	18	8	4	7	13	56	87	188	281	152	154	195	274	254	242	262	240	206	94	68	35	24	12	14	2868	0.94	0.05	0.98	2520
$2001 / 10003$ Wed	22	6	2	9	15	55	H6	20	284	159	178	197	207	221											1713	0.93	0.95	0.98	1497
Average：	16	5	3	7	10	43	73	150	200	131	153	170	288	180	184	201	200	153	78	48	27	18	10	14					
		Sun		Mon ${ }^{\text {2 }}$	Tue＊		Wed ${ }^{\text {A }}$	Thu＊		Fr1	Sat ${ }^{\text {＊}}$		eekday	Weel	kend	All Day			age Pe	kV			Prelimi	ary A	ADT： 210				
Hours Averag		2		24	24		24	24		24	24		120		48		168		Pak ${ }^{\text {ma}}$				Poll Sit						
Average Votur		720		2785	2868		2848	2804		2888	1329		2797		1025		290		Peakter	27			Poll Gm		Urban				

＊＊Adjusted Average Day equals $5 / 7^{*}$ Avg Weekday $+27^{*}$ Avg Weekend Day
${ }^{* *}$ AM PM Peak Average Volumes are only from the weekday days
Run Date: 2004/01/05
Site ID: S6A012
$\begin{array}{ll}\text { Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER } & \text { Count Type: CLASS } \\ \text { Location: US7: } 0.35 \mathrm{mi} \text { S of TH73/TH9 HATH UALCY RD } & \text { Counter Type: Tube }\end{array}$
$\begin{array}{llllllllllllllllll}\text { Date } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
echnical Services Divisio
Traffic Research Unit
Special Count - Volume
2002
Vermont Agency of Transportation

- Technical Services Division
Town: Mid

* Averaging by hour(0-23), then by day of week (Sun-Saf)
** Adjusted Average Day equals $5 / 7^{*}$ Avg Weekday $+2 / 7$ * Avg Weekend Day
** AM _PM Peak Average Volumes are only from the weekday days
Run Date: 2004/01/05
Vermont Agency of Transportation Technical Services Division
Traffic Research Unit 2002
Town: Middlebury

		6057	0.63	0.95	0.97	5223	
173	111						

Proliminary AADT: 10200
Poll Site: P6Aas1
Poll Group: Rural Primary and Secondary
US 7 Between Happg Villey RD 4 Nawt tuven TL
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER
Sife ID: S6A 105
$\begin{array}{lccccccccccccccccc}\text { Location: } & \text { Middlebury: US7 } & & & & & \\ \text { Date } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$

2002109/18 Wed
200210919 Thu
200200120 Fti
$200209 / 21 \mathrm{Sat}$
Average: $\begin{array}{llllllllllllll}72 & 34 & 25 & 36 & 48 & 153 & 382 & 688 & 969 & 737 & 725 & 771 & 709 & 780 \\ 820\end{array}$

	Sun*	Mon*	Tua*	Wed*	Thu *	Fri*	Sat*	Weekday	Weakend	All Days**	Average Peak Volume:	Preliminary AADT: 10200
Hours Averaged:		${ }^{8}$	24	24	24	24	15	105	15	120	AM Peak ${ }^{\text {coma }}$: 968	Poll Site: P6A041
Average Volume:		4717	11791	11915	11972	13209	. 6057	12252	9881	11521	PM Peak ${ }^{\text {na }}$: 1054	Poll Group: Rural Primary and Secondary

* Averaging by hour($0-23$), then by day of week (Sun-Sat)
**Adjusted Average Day equals $5 / 77^{\text {* }}$ Avg Weekday $+217^{*}$ Avg Weekend Day

Project Name:	Middllebury - Exchange Street - Route 7 Intersection	Dufresne-Henry
Purpose:	Finding Peak Hour Adjustment Volumes	
Project Number:	6330030	Green Mountain Drive
Calculated by:	SRZ	P.O. Box 2246
Date:	8-Apr-04	South Burlington, VT 05407
Updated:	$9-$ Jun-04	

VEHICLE TURNING MOVEMENT COUNT April 2, 2004	\#630030
Route 7/Exchange St/Happy Valley Rd	$4 / 8 / 2004$
Middlebury, VT	SRZ

Original Counted Data 2004
Original Data from April 2, 2004

2006 DHV
1.102×1.07
Adjustment Factor 2004 to $2006=1.179$

2016 DHV
1.102×1.25
Adjustment Factor 2004 to $2016=1.378$

8:00
8:15
8:30
8:45
9:00

9:15

9:30

9:45

10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15
12:30
12:45
13:00
13:15
13:30
13:45
14:00
14:15
14:30
14:45
15:00
15:15
15:30
15:45
16:00
16:15
16:30
16:45
17:00
17:15
17:30
17:45
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array} 12$ $\begin{array}{llllllllllll}31 & 141 & 1 & 0 & 3 & 0 & 2 & 66 & 5 & 0 & 1 & 4\end{array}$ $\begin{array}{llllllllllll}34 & 103 & 1 & 0 & 0 & 1 & 1 & 67 & 6 & 5 & 1 & 12\end{array}$ $\begin{array}{llllllllllll}35 & 122 & 0 & 2 & 2 & 1 & 1 & 63 & 11 & 10 & 0 & 7\end{array}$ $\begin{array}{llllllllllll}19 & 92 & 0 & 0 & 1 & 2 & 1 & 82 & 8 & 4 & 0 & 12\end{array}$ $\begin{array}{llllllllllll}19 & 86 & 1 & 1 & 2 & 2 & 0 & 58 & 9 & 3 & 0 & 15\end{array}$ $\begin{array}{llllllllllll}17 & 72 & 1 & 0 & 1 & 0 & 0 & 49 & 5 & 3 & 0 & 9\end{array}$ $\begin{array}{llllllllllll}18 & 82 & 0 & 1 & 2 & 0 & 0 & 67 & 4 & 4 & 0 & 13\end{array}$ $\begin{array}{llllllllllll}18 & 86 & 1 & 1 & 1 & 1 & 1 & 70 & 2 & 2 & 0 & 10\end{array}$ $\begin{array}{llllllllllll}17 & 84 & 2 & 0 & 1 & 2 & 0 & 68 & 4 & 4 & 1 & 15\end{array}$ $\begin{array}{llllllllllll}18 & 70 & 2 & 1 & 1 & 0 & 0 & 79 & 5 & 3 & 0 & 21\end{array}$ $\begin{array}{llllllllllll}17 & 81 & 1 & 1 & 2 & 0 & 0 & 65 & 3 & 3 & 1 & 15\end{array}$ $\begin{array}{llllllllllll}11 & 66 & 0 & 0 & 1 & 2 & 2 & 58 & 3 & 7 & 0 & 23\end{array}$ $\begin{array}{llllllllllll}17 & 78 & 0 & 0 & 0 & 0 & 0 & 93 & 2 & 5 & 1 & 12\end{array}$ $\begin{array}{llllllllllll}14 & 70 & 0 & 0 & 2 & 0 & 1 & 72 & 1 & 0 & 0 & 13\end{array}$ $\begin{array}{llllllllllll}12 & 62 & 1 & 1 & 0 & 1 & 0 & 92 & 3 & 5 & 1 & 12\end{array}$ $\begin{array}{llllllllllll}22 & 77 & 2 & 1 & 3 & 0 & 2 & 61 & 6 & 7 & 1 & 15 \\ 18 & 77 & 3 & 1 & 1 & 1 & 2 & 62 & 2 & 5 & 2 & 12\end{array}$ $\begin{array}{llllllllllll}24 & 83 & 0 & 0 & 2 & 0 & 1 & 85 & 5 & 10 & 5 & 29\end{array}$ $\begin{array}{llllllllllll}18 & 82 & 2 & 0 & 2 & 1 & 2 & 78 & 6 & 10 & 1 & 19\end{array}$ $\begin{array}{llllllllllll}17 & 64 & 0 & 0 & 0 & 0 & 0 & 83 & 2 & 3 & 2 & 20\end{array}$ $\begin{array}{llllllllllll}14 & 72 & 1 & 2 & 1 & 2 & 1 & 72 & 5 & 2 & 0 & 10\end{array}$ $\begin{array}{llllllllllll}7 & 84 & 0 & 0 & 2 & 0 & 1 & 78 & 2 & 9 & 1 & 21\end{array}$ $\begin{array}{llllllllllll}10 & 81 & 1 & 0 & 1 & 0 & 0 & 63 & 6 & 8 & 0 & 18\end{array}$ $\begin{array}{llllllllllll}14 & 91 & 0 & 1 & 2 & 1 & 0 & 84 & 3 & 3 & 0 & 11\end{array}$ $\begin{array}{llllllllllll}13 & 88 & 0 & 0 & 2 & 1 & 0 & 79 & 3 & 5 & 0 & 13\end{array}$ $\begin{array}{llllllllllll}14 & 73 & 0 & 0 & 0 & 0 & 1 & 89 & 5 & 11 & 0 & 37\end{array}$ $\begin{array}{llllllllllll}18 & 77 & 2 & 0 & 1 & 0 & 0 & 96 & 4 & 8 & 0 & 22\end{array}$ $\begin{array}{llllllllllll}7 & 97 & 0 & 0 & 0 & 1 & 1 & 109 & 4 & 6 & 1 & 19\end{array}$ $\begin{array}{llllllllllll}11 & 86 & 0 & 1 & 0 & 0 & 1 & 92 & 5 & 7 & 2 & 15\end{array}$ $\begin{array}{llllllllllll}12 & 75 & 0 & 0 & 1 & 1 & 1 & 108 & 5 & 5 & 1 & 25\end{array}$ $\begin{array}{llllllllllll}14 & 77 & 2 & 0 & 4 & 1 & 0 & 127 & 6 & 9 & 2 & 24\end{array}$ $\begin{array}{llllllllllll}13 & 92 & 0 & 3 & 2 & 0 & 0 & 139 & 3 & 13 & 3 & 21\end{array}$ $\begin{array}{llllllllllll}17 & 107 & 2 & 2 & 0 & 0 & 0 & 127 & 4 & 5 & 3 & 25\end{array}$ $\begin{array}{llllllllllll}16 & 90 & 1 & 0 & 0 & 1 & 0 & 108 & 4 & 11 & 1 & 25\end{array}$ $15 \quad 86$ $\begin{array}{llllllllllll}17 & 75 & 0 & 1 & 0 & 0 & 0 & 116 & 1 & 9 & 0 & 29\end{array}$ $\begin{array}{llllllllllll}13 & 83 & 0 & 0 & 1 & 0 & 1 & 104 & 4 & 0 & 1 & 26\end{array}$ $\begin{array}{llllllllllll}11 & 87 & 1 & 0 & 1 & 0 & 2 & 140 & 1 & 8 & 3 & 33\end{array}$ $\begin{array}{llllllllllll}8 & 86 & 0 & 2 & 5 & 0 & 0 & 106 & 0 & 5 & 5 & 21\end{array}$ $\begin{array}{llllllllllll}6 & 89 & 0 & 1 & 1 & 0 & 0 & 98 & 1 & 1 & 1 & 15\end{array}$

Smith, Mark

From:
Sent:
To:
Subject:

Fred Dunnington [fdunnington@town.middlebury.vt.us]
Thursday, May 13, 2004 2:14 PM
Smith, Mark
RE: Industrial Acreage

Mark -
Call me when you have the stuff that was faxed in your hand - so we can resolve any questions.

The zoning is all Industrial, except for the following areas which are General Commecial: The lots south of Agri -Mark / Cabot, and the area east of Exchange St. (the 35 acre piece and 7 acre piece marked on the Project location Map faxed to you.

Fred
Fred S. Dunnington fdunnington@town.middlebury.vt.us
mailto:fdunnington@town.middlebury.vt.us
Middlebury Town Planner
Zoning Administrative Officer
94 Main St. Municipal Building
Middlebury VT 05753
(802) 388-8106
(802) 388-4364 fax

Town web site: www.middlebury.govoffice.com http://www.middlebury.govoffice.com
-----Original Message-----
From: Smith, Mark [SMTP:Mark.Smith@dufresne-henry.com]
Sent: Thursday, April 29, 2004 1:37 PM
To: fdunnington@town.middlebury.vt.us
Subject: Industrial Acreage
Any luck with an estimate of acreage for Exchange St.?
The zoning description would help too. I assume you expect a mix of commercial, light industrial and manufacturing uses in these areas.

Thanks.
Mark C. Smith, P.E.
Dufresne-Henry
Engineers, Planners, Landscape Architects
and Environmental Scientists
vox: 802.864 .0223 fax: 864.0165 auto: 383.0186
55 Green Mountain Drive / Post Office Box 2246
South Burlington, Vermont USA 05407-2246
mark.smith@dufresne-henry.com mailto:mark.smith@dufresne-henry.com
www.dufresne-henry.com

FAX TRANSMITTAL SHEET

TO: \qquad
FAX: 864-0165
FROM FAX \#: 802-388-4364

DEPARTMENT AND TELEPHONE NUMBER LISTED BELOW:
\qquad

TOWN MANAGERS OFFICE 802-388-8100

BOOKKEEPING 802-388-8101

ZONING OFFICE 802-388-8105

RECREATION 802-388~4041

POLICE DEPT. 802-388-3191

BILLING OFFICE 802-388-4047

TOWN CLERK
802-388 8102
TREATMENT PLANT 802-38806498

LISTERS OFFICE 802-388-8108

PUBLIC WORKS 802-388-4045

LIBRARY Y
802-388,4095
OTHER

DATE: \qquad \# OF PGS (INCLUDING COVER) \qquad 6

NOTES:
\qquad
\qquad
\qquad
$\frac{\text { Beth Dow for Fred Nanning to s }}{\text { municipal building } 802-388-4041^{\circ}}$
FAX 802-388-4364
POLICE DEPARTMENT 802-388-3191*
PUBLIC WORKS DEPARTMENT 802-388-4045
WASTEWATER TREATMENT PLANT 802-388-0498

- TDD AVAILABLE

INDUSTRIAL PARK EXPANSION Middlebury, Vermont
 MASTER PLAN

Jautuary 1997

Middlebury Industrial Park Expansion Existing Industrial Area Data										
Tax Parcel Number	Lot Name	Use Туре (Note 1.)	Lot (Acres) (Note 2)	Bldy. (sq. ft.) (Note 3)	Parking Avait.	Parking Used (Note 4)	Businesses within Building	Emplo Full time	yees Part Time	Average Water Use (gal/day)
4023	Anthany Ner'	$\mathrm{c} / 1$	4	7.500	80	50	Vermont Soap Works	6		238
4023.001	Anthony Nerl (Building only\}	C/t		15,500			Vermont Oryanic Cresmery Rebound Video Service Vermont Qualify Products Dynamila Radio inc.	$\begin{aligned} & 2 \\ & 2 \\ & 8 \\ & 3 \end{aligned}$	C-5st.	$\begin{aligned} & 702 \\ & 188 \\ & 77 ? \\ & 41 \end{aligned}$
4054	Michasi Rsinvilic	C/	4.4	6,500	26	14	Maple Landmark Wooderant	15		112
4058	Gicger of Austria	C/	18,5	45,600	123	45	Gleger of Austria inc	E\%		1,028
4052	AgrioMark Inc. (Canbot)	$\mathrm{C} /$	34, 1	54,000	50	23	Cabot Creamery	70		134,657
4064.003	Lawrence W. Miller II	C/h	8.8	14,304	31	15	Ohar Creek Brewhig inc.	33		3,740
21037.001	Fredrick Danforth	C/I	0.12	8.050	58	32	DSTforth Pewuerer	50		581
4023,002	Anthony Nori (Buliding only)	1		7,500			Middiobury Vending	40		275
4027.001	Maxwelr E. Eston, Jr.	1	3.5	7,500	38	23	Otter Creek Awnings	24	13	152
4055	VI Industrial Park (Camara)	1	8.49	14,884	188	73	Higiland Press VEMAS Questech Melals	$\begin{aligned} & 4 \\ & 38 \\ & 72 \\ & \hline \end{aligned}$		475 Included ^ included a
4057	Withism Holdman	1	4.1	12.816	70	30	Whiliom P Holdman Inc	30	10	290
4059	H.R. Funk Trust and H, Funk	1	12.4	49,809	82	43	CPC of Vermont int	72	32	2,773
4060,01	VT industriod Park (Camara)	1	4.48	10,880	30	14	cloer Jack	19		4.793
4063	Agri-Mark inc,	1	5.8	70,355	18	5	Agri-Mark inc.	See Cabot		7,051
4054.002	Cassella Associat	1	10.1	8,750	24	10	Casena Wasto Mismacement	15		113
4069	Addison County Asphalt PTod.	1	5.3	2,533	5	1	Addisori County Asphan Prod.	2		72?
21030	Bourdesu Focds	1	4,5	12,046	22.	12	Boufdenu \& Bushey	14		254
21041	Rogers Fuels inc.	$!$	1.2	4,308	18	6	Rogers Fuels tric.	5		30
21043	Agway feeos	I	7	27,000	57	32	Agway Feed Dlvision Agway Truck Plant Agiway Forlillzer	$\begin{aligned} & 10 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$.	92 431
21044	Louls Quesnc!	1	5.2	5,740	13	13	Mldoiebuty packing Ca,	6		3,767
4025	$\sqrt{ }$ industris) Park (Carrara) Carbra Building	0	3.1	17,120	88	42	Agency of Human Servicos Dept. of Employ \& Trg. Votathonal Rehabllitation Off. Addison Cty, Coturt Dlversion	40 inchuded A Included A tincluded A	<-E¢	524 Included ${ }^{\wedge}$ meluded ${ }^{\wedge}$ meluded A
4028	Yankee Farm Credil	0	3.5	6,002	35	19	Crismplain Valley Famin Credr Porter Medica! Drinopedios	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	2	$\begin{gathered} 172 \\ \text { Includes } \end{gathered}$
4055	National Bank of Middenury	0	4.43	4,000	17	6	Nertonsi Bank of Mldolebury	12		82
4030	Davio E. Foilino	\bigcirc	4.65	8.485	25	20	Conconitrsted Knowledge	25		64
4052	Bridge Scheol	C	3.5	12,500	35	2.	Bridge Schrol	5	C-Est.	459
4064.001	Carpontar Enterprises	C	5.82	5,000	17	9	Champlain Valley Equip, Inc.	9	3	133
4073	VFW	C	4.4	7,100	106	6	VFW Post 7823	5		408
4075,001	Steven Haro	C	4.52	14,231	80	32	Varmont Sun SporiskFinness	13		2,454
21037	Wiliam R, Jackson	C	1.2	11.947	32	87	Wulliam R. Jackson	5	<-Est.	550
21045	Aqway Inc.	C	4.9	20,017	61	4	Agway Bullding Supply	10		310
21042	Roch R, Macintyre	R	2.2	875	2	0	Residontial	0		2
4027	Other Vallay Equip. (Camata)	U	7.1				Open Lot	0		
4045	Middlebury College	U	90	-Note 5			Openhot	0		
4053	Ottor Valley Equip. (Carrars)	U	34,86				Opentor	0		
4061	VI Industrial Park (Camara)	U.	3.9				Open Lof	0		
4064	Middlebury Coilege	\square	9.2				Opentat	0		
4075	$V 1$ (ndusirial Park (Carrara)	U	40,58				Open Lot	0		
21047	F,R, Churehill and Sons	U	2.4				Open Li	$\overline{0}$		
21080	Town of Midclabury	\cup	0.2				Opon Lot (Sewor Main)	0		

[^0]TABLE 2
Middlebury Industrial Park Expansion Statistics from Existing Industrial Area Data

Building Area (Sq.Ft)
Total Bulloing Area

437,049
Commा.-Ind. Comb. Use Avg. Bidg. Ares
Industinal Building Area
151,454
174,318
Otfice Usc Only Bullding Arsa 35,607
Commercial Bulloing Arca
74,795
P.esldential Buplding Afoa

Average Building Area Per Acre (Sq-Ft.)	
Total Building Ares/Acre 2,356	
Comm.-Ind. Comb, Use Avg. Bidg. Area/	2,133
Indusirial Average Bullding Ares/Acre	2,419
Offite Use Only Average Bldg. Area/Aare	2,271
Commerctal Aversge Building Ares/Aere	3,048
Residerilat Average Euliding Area/Acre	388
Building Lot Coverage (\%)	
Total Butiding Lot Coversge $\quad 5.4 \%$	
Comm.tind. Comb, Use Lat Coverage	4.9\%
Industrial Building Lot Coversge	5,6\%
Office Uso Only Bullding Lot Coverage	5,2\%
Commorclal Bulldhg Lol Coversge	7,0\%
Residenlial Bullding Lot Coverage	0.9\%

Middlebury
\#6330030
May 172004
SRZ - Burlington

Industrial Park Trip Generations

7th Gen: Land Use 130 pg 132

Industrial parks contain a number of industrial or related facilities. They are characterized by a mix of manufacturing, service and warehouse facilities with a wide variation in the proportion of each type of use from one location to another. Many industrial parks contain highly diversified facilities - some with a large number of small businesses and others with one or two dominant industries.

Assumptions:
271,000 SF of floor space

```
AM Weekday Peak Hour for Street
    222 vehicle trip ends
    82 % Entering
        18 % Exiting
```

PM Weekday Peak Hour for Street
251 vehicle trip ends
21 \% Entering
79 \% Exiting

Middlebury
\#6330030
May 172004
SRZ - Burlington

General Office Building Trip Generations

7th Gen: Land Use 710 pg 1149

A general office building houses multiple tenants, it is a location where affaris of businesses, commercial or industrial organizations, or professional persons or firms are conducted. An office building or buildings may contain a mixture of tenant services such as a bank or savings and loan institutionn, a restaurant or cafeteria, and service retail facilities.

Assumptions:
20,000 SF office building

AM Weekday Peak Hour for Street
52 vehicle trip ends
88% Entering
12% Exiting

PM Weekday Peak Hour for Street 101 vehicle trip ends

17 \% Entering
83 \% Exiting

Middlebury
\#6330030
May 172004
SRZ - Burlington

Free-Standing Discount Store Trip Generations

7th Gen: Land Use 815 pg 1347

The discount stores in this category are free-standing stores with off-street parking. They usually offer a variety of customer services, centralized cashiering and a wide range of products. They typically maintain long store hours 7 days a week. The stores included in this land use are often the only ones on the site, but they can also be found in mutual operation with a related or unrelated garden center and/or service station. Free standing discount stores are also sometimes found as separate parcels within a retail complex with their own dedicated parking.

Assumptions:
35 acres of land
Commercial avg. 3048 SF per acre
107,000 SF Floor Area

AM Weekday Peak Hour for Street
~90 vehicle trip ends
66 \% Entering
34% Exiting

PM Weekday Peak Hour for Street
~ 540 vehicle trip ends

50 \% Entering
50 \% Exiting
prepared br Stephanie Zehler \qquad Project no.\#6330030 CALCULATIONS CHECKED BY \qquad DATE \qquad SHEET NO. 1 OF 5 ASSUMPTIONS / METHODS CHECKED BY \qquad DATE \qquad SUBJECT \qquad DATE \qquad \%'s approximated from Bruno
Total New (Am) Associates Analysis, 1997 Traffic Generated

Am week day Peak
Incuse $222 \rightarrow 182$
$\rightarrow 18 \%$ exit $\rightarrow 40$
$\begin{aligned} & \text { Office } \\ & \longrightarrow \\ & \longrightarrow 00 \% \text { enter } \longrightarrow 46 \\ & 12 \% \text { ext } \longrightarrow 6\end{aligned}$
$\frac{\text { TOTAL } 2 x_{\pi} \pi}{77}$
$\begin{aligned} & \text { Big Bo } \\ & 90 \longrightarrow \\ & 66 \% \text { enter e } \longrightarrow 59 \\ & 34 \% \text { ext } \longrightarrow 31\end{aligned}$
\qquad Stephan Zehler
\qquad DATE \qquad SHEET NO. Z OF 5 ASSUMPTIONS / METHODS CHECKED BY \qquad DATE \qquad SUBJECT \qquad

TOTAL NEW (PM)
traffic generated
\%'s approximated from Bruno Associates Analysis, 1997

Pm weekday Peak
$\begin{array}{ll}\text { Industry } \\ 251 \longrightarrow & \rightarrow 21 \% \text { enter } \rightarrow 53 \quad \text { TOTAL ENTER } \\ 340\end{array}$
$\begin{aligned} & \text { Office } \\ & 101 \longrightarrow 17 \% \text { enter } \longrightarrow 17 \\ & 93 \% \text { ext } \longrightarrow 84\end{aligned}$

Bigbox $540 \longrightarrow 50 \%$ enteR $\rightarrow 270$
50% exit $\rightarrow 270$

\qquad Stephanie Zechler
CALCULATIONS CHECKED BY \qquad DATE \qquad SHEET NO. 3 OF 5 ASSUMPTIONS / METHODS CHECKED BY DATE \qquad SUBJECT \qquad

Approximated \%'s
for TRaffic Analysis

Taken from Bruno Associates Analysis, 1997
Adjusted 1997 Counts

LEGEND
000 Am (000) pm
$=$ Entering TRaffic - sExting
\qquad
\qquad SHEET No. 4 OF 5 ASSUMPTIONS / METHODS CHECKED BY \qquad DATE \qquad
\qquad SUBJECT \qquad -

Taken from Bruno Associates

Approximated \%'s for TRaffic Analysis

Analysis, 1997
Adjusted 1997 Courts

Exiting Traffic

$$
\begin{array}{ccc}
5462 \% & (94) & (60 \%) \\
9 & 10 \% & (3) \\
\frac{24}{87} 20 \% & (2 \%) \\
\hline & (3138) & (30 \%)
\end{array}
$$

Entering TRaffic

\qquad Stephanie Zehler DATE \qquad 51.0104

CALCULATIONS CHECKED BY \qquad DATE \qquad SHEET NO. \qquad ASSUMPTIONS / METHODS CHECKED BY \qquad DATE \qquad
\qquad SUBJECT \qquad

Industrial Park
Trip Generations
$271,000 \mathrm{SF}$

Am weekday Peak hr Fore street

$$
\operatorname{Ln}(T)=0.77 \operatorname{Ln}(x)+1.09
$$

$$
T=222 \text { vehicle end trips }
$$

Pm weekday Peak HR fore Street

$$
\begin{aligned}
& T=0.77(x)+42.11 \\
& T=251 \text { vehicle end trips }
\end{aligned}
$$

General office
Building TRip Generations 29000 SF

Am weekday Peak Hr For Street

$$
\begin{aligned}
& \operatorname{Ln}(T)=0.80 \operatorname{Ln}(X)+1.55 \\
& \operatorname{Ln}(T)=3.947 \\
& T=52 \text { vehicle end trips }
\end{aligned}
$$

Pm weekday Peak HR for streets

$$
T=1.12(x)+78.81
$$

$T=101$ vehicle end trips

Landuse 130
page 132
82% entering
10% exiting
21% entering
79% exiting

Landuse 710 page 1149
80% entering
12% exiting
17% entering
83% exiting

Prepared by \qquad Stephanie Zehiler date 5/10/04 project vo. 6330030 CALCULATIONS CHECKED BY \qquad DATE \qquad SHEET NO. \qquad 3 ASSUMPTIONS / METHODS CHECKED BY \qquad DATE \qquad
\qquad SUBJECT \qquad DATE \qquad

Free-Standing Discount
Stree Trip Gerreations
107,000 SF

Am weekday Peak He For Street
~ 90 vehicle trip ends from graph approx mated

Pm weekday Peak HR For Street
~ 540 vehicle trip ends from gleaph approximated

Landuse 815 Page 1347
66% entering
34% exiting
50% entering
50% exiting
\qquad Stephan Z.hler
\qquad DATE \qquad SHEET NO. \qquad OF \qquad ASSUMPTIONS / METHODS CHECKED BY \qquad DATE \qquad

$$
\begin{array}{cc}
\hline \text { PM } 2006 \\
\text { PEAK } & \begin{array}{c}
\text { Rt } 7 \\
\text { North }
\end{array} \\
\hline
\end{array}
$$

$140 \quad 570 \quad 2$

$$
\begin{array}{ccc}
71 & 432 & 6 \\
\lrcorner & \downarrow
\end{array}
$$

TChangest

112

Am/PM Distaribted
Adusted Volumes ul Development Volumes

These are the volumes to be used in the synchro (LoS) PrograM, FOR 2016.

AM Adjusted Peak Volumes for 2006
7:45
8:00
8:15
$8: 30$

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{3 7}$	166	1	0	4	0	2	78	6	0	1	5
40	121	1	0	0	1	1	79	7	6	1	14
41	144	0	2	2	1	1	74	13	12	0	8
22	108	0	0	1	2	1	97	9	5	0	14
$\mathbf{1 4 0}$	$\mathbf{5 4 0}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{3 2 8}$	$\mathbf{3 5}$	$\mathbf{2 2}$	$\mathbf{2}$	$\mathbf{4 1}$

299
272
299
261
1132

PM Adjusted Peak Volumes for 2006

15:15
15:30
15:45
16:00

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1 7}$	91	2	0	5	1	0	150	7	11	2	$\mathbf{2 8}$
$\mathbf{1 5}$	108	0	4	2	0	0	164	4	15	4	25
$\mathbf{2 0}$	126	2	2	0	0	0	150	5	6	4	29
19	106	1	0	0	1	0	127	5	13	1	29
$\mathbf{7 1}$	$\mathbf{4 3 2}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{5 9 1}$	$\mathbf{2 0}$	$\mathbf{4 5}$	$\mathbf{1 1}$	$\mathbf{1 1 2}$

314
341
344
303
1302

AM Adjusted Peak Volumes for 2016 wlout development

	$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{7 : 4 5}$	43	194	1	0	4	0	3	91	7	0	1	6
$\mathbf{8 : 0 0}$	47	142	1	0	0	1	1	92	8	7	1	17
$\mathbf{8 : 1 5}$	48	168	0	3	3	1	1	87	15	14	0	10
$\mathbf{8 : 3 0}$	26	127	0	0	1	3	1	113	11	6	0	17
	$\mathbf{1 6 4}$	$\mathbf{6 3 1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{3 8 3}$	$\mathbf{4 1}$	$\mathbf{2 6}$	$\mathbf{3}$	$\mathbf{4 8}$

350
318
350
305
1323

PM Adjusted Peak Volumes for 2016 w/out development
15:15
15:30
15:45
16:00

1	2	3	4	5	6	7	8	9	10	11	12
19	106	3	0	6	1	0	175	8	12	3	33
18	127	0	4	3	0	0	192	4	18	4	29
23	147	3	3	0	0	0	175	6	7	4	34
22	124	1	0	0	1	0	149	6	15	1	34
$\mathbf{8 3}$	$\mathbf{5 0 4}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{6 9 0}$	$\mathbf{2 3}$	$\mathbf{5 2}$	$\mathbf{1 2}$	$\mathbf{1 3 1}$

AM Adjusted Peak Volumes created by new Development 2016

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PM Adjusted Peak Volumes created by new Development 2016

	1	2	3	4	5	6	7	8	9	10	11	12
3.15 to 4.15 PM	97	-	-	-	9	-	-	-	27	55	12	137

337

AM Adjusted Peak Volumes for 2016 including new Development
$\begin{array}{ccccccccccccc} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \text { 7:45 to 8:45 } & 266 & 631 & 3 & 3 & 13 & 6 & 7 & 383 & 53 & 35 & 4 & 65\end{array}$

PM Adjusted Peak Volumes for 2016 including new Development

$$
\begin{array}{ccccccccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
3: 15 \text { to 4:15 PM } & 180 & 504 & 7 & 7 & 17 & 3 & 0 & 690 & 50 & 107 & \mathbf{2 4} & \mathbf{2 6 8}
\end{array}
$$

Signal Varrat Outpets JUEO4
Law Data
(1) 2004 Aus $\times 1.036$

Add Ind Park Growte
(7) 2006
(3) 2016

Auv
$\times 1.066$
Aur $\times 11245$

1\&2 now
3 lator
\qquad MOS
\qquad
\qquad
\qquad
\qquad SHEET NO. \qquad OF SUBJECT \qquad

ADJUST COUNTS TO DAN

$$
k=0.108
$$

ave factor 1.102

$$
\begin{aligned}
\text { COUNT } \times \text { FACTOR } & =\text { DHV2002 } \\
\text { DHV2002 } \times 1.07 & =\text { DHV } 20.06 \\
\text { DH } 2002 \times 1.25 & =\text { DHV } 2016 \\
\times 1.04 & =\text { DHV } 2004 \\
\text { DHV } \times \frac{1}{1.106} & =\text { AWV }
\end{aligned}
$$

FOR SIGNAL GOARRAMTS

$$
\text { COUNT } \times \frac{1.102 \times 1.07}{\frac{1.106}{1.102 \times 1.25}}=\sqrt{1.066(2006)}=\begin{aligned}
& 1.036(2004) \\
& 1.245(2016)
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { MADT }=1.00 \\
& \therefore \frac{\text { MADT }}{\text { MAWT }}=1.063
\end{aligned}
$$

$$
(三 \operatorname{aug} f \text { gray \#b) }
$$

$$
\begin{aligned}
\text { AAWT } & =\text { MAWT } \times \frac{\text { AADT }}{\text { MADT }} \sim \frac{\text { AAWT }}{\text { MALT }} \\
& =1.063 \times 1.04 \\
& =1.106
\end{aligned}
$$

$119 \quad 458 \quad 2$
$\star \downarrow L$

Am PEAKK $7: 45-0: 45$
$60366 \quad 5$

$$
\begin{aligned}
& \uparrow 5 \\
& \leftarrow 6 \\
& \sqrt{2}
\end{aligned}
$$

PM PEAK 3:15-4:15

									Year	Wht 2002	to 2022	1.35
	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
1997	1.00											
1998	1.01	1.00										
1999	1.02	1.01	1.00									
2000	1.02	1.02	1.01	1.00								
2001	1.03	1.02	1.02	1.01	1.00							
2002	1.04	1.03	1.02	1.02	1.01	1.00						
2003						1.02	1.00					
2004						1.04	1.02	1.00				
2005						1.05	1.03	1.02	1.00			
2006						1.07	1.05	1.03	1.02	1.00		
2007						1.09	1.07	1.05	1.03	1.02	1.00	
2008						1.11	1.09	1.07	1.05	1.03	1.02	1.00
2009						1.12	1.10	1.08	1.07	1.05	1.03	1.02
2010						1.14	1.12	1.10	1.08	1.07	1.05	1.03
2011						1.16	1.14	1.12	1.10	1.08	1.06	1.05
2012						1.18	1.15	1.14	1.12	1.10	1.08	1.06
2013						1.19	1.17	1.15	1.13	1.11	1.10	1.08
2014						1.21	1.19	1.17	1.15	1.13	1.11	1.10
2015						1.23	1.21	1.19	1.17	1.15	1.13	1.11
2016						1.25	1.22	1.20	1.18	1.16	1.14	1.13
2017						1.26	1.24	1.22	1.20	1.18	1.16	1.14
2018						1.28	1.26	1.24	1.22	1.20	1.18	1.16
2019						1.30	1.28	1.25	1.23	1.21	1.19	1.17
2020						1.32	1.29	1.27	1.25	1.23	1.21	1.19
2021						1.33	1.31	1.29	1.27	1.25	1.23	1.21
2022						1.35	1.33	1.30	1.28	1.26	1.24	1.22
2023						1.37	1.34	1.32	1.30	1.28	1.26	1.24
2024						1.39	1.36	1.34	1.32	1.29	1.27	1.25
2025						1.40	1.38	1.36	1.33	1.31	1.29	1.27
2026						1.42	1.40	1.37	1.35	1.33	1.31	1.29
2027						1.44	1.41	1.39	1.37	1.34	1.32	1.30
2028						1.46	1.43	1.41	1.38	1.36	1.34	1.32
2029						1.47	1.45	1.42	1.40	1.38	1.35	1.33
2030						1.49	1.46	1.44	1.42	1.39	1.37	1.35
2031						1.51	1.48	1.46	1.43	1.41	1.39	1.36
2032						1.53	1.50	1.47	1.45	1.43	1.40	1.38
2033						1.54	1.52	1.49	1.47	1.44	1.42	1.40
2034						1.56	1.53	1.51	1.48	1.46	1.43	1.41
2035						1.58	1.55	1.52	1.50	1.47	1.45	1.43
2036						1.60	1.57	1.54	1.52	1.49	1.47	1.44
2037						1.61	1.58	1.56	1.53	1.51	1.48	1.46
2038						1.63	1.60	1.57	1.55	1.52	1.50	1.48
2039						1.65	1.62	1.59	1.57	1.54	1.51	1.49
2040						1.67	1.64	1.61	1.58	1.56	1.53	1.51
2041						1.68	1.65	1.63	1.60	1.57	1.55	1.52
2042						1.70	1.67	1.64	1.62	1.59	1.56	1.54
2043						1.72	1.69	1.66	1.63	1.61	1.58	1.55
2044						1.74	1.71	1.68	1.65	1.62	1.60	1.57
2045						1.75	1.72	1.69	1.67	1.64	1.61	1.59
2046						1.77	1.74	1.71	1.68	1.65	1.63	1.60
2047						1.79	1.76	1.73	1.70	1.67	1.64	1.62

DHV DETERMINATION BASED ON AADT AND HIGHWAY CLASS

AADT	Interstate	General	Recreational
$\mathbf{5 0}$	80	65	145
100	90	70	150
150	95	75	155
200	100	80	165
$\mathbf{2 5 0}$	105	85	170
300	115	95	175
350	120	100	180
400	125	105	190
450	130	110	195
500	140	115	200

Project 6330030 ACRPC US7-Exchg St
2006 Projected Traffic Data from Friday Apri1 2, 2004
16:39:37
SRZ

WARRANTS/TEAPAC[Ver 2.02.14] - MUTCD Warrant Analysis

| Conditions Used for Warrant Analysis | 2003 MUTCD |
| :--- | ---: | ---: |
| Major Street Direction | NorthSouth |
| Mamber of Lanes in North-South direction | 1 |
| Number of Lanes in East-west direction | 1 |
| Approach speed on major street is greater than 40 mph | No |
| Isolated community has population less than 10,000 | No |
| Signal will not seriously disrupt progressive traffic flow | Yes |
| Trials of other remedies have failed to improve conditions | No |
| Number of accidents correctable by a signal | 0 |
| Peak hour stop sign delay for worst minor approach (veh-hours) | 0 |
| Number of accidents correctable by a multi-way stop | 0 |
| Peak hour average delay for all minor approaches (sec/veh) | 0 |

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1A Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1400	1145	945	1300	1045	800	Req.
Minor volume	152	149	137	122	98	95	76	73	150
Major volume	1013	1029	845	763	702	756	734	875	500
Warrant Met?	Yes	No							

 Signal will not seriously disrupt progressive traffic flow Yes >> WARRANT 1A IS NOT MET <<

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1500	1600	1400	1130	1700	1300	945	800	Req.
============	145	142	137	120	111	95	98	= $=$ 73	75
Major Volume	994	898	845	767	983	756	702	875	750
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	8

$==$
>> WARRANT 1B IS NOT MET <<
Warrant 1A Analysis (80\%) - 8-Hour Minimum Vehicular Volume

Start Time	1545	1445	1345	1645	1130	1230	945	800	Req.
Minor volume	148	135	131	126	120	100	98	73	120
Major volume	953	928	833	1005	767	708	702	875	400
Warrant Met?	Yes	Yes	Yes	Yes	Yes	No	No	No	8

```
        12--ful1 warrant .txt
Number of 1-hour periods meeting the warrant

Project 6330030 ACRPC US7-Exchg St 2006 Projected Traffic Data from Friday Apri1 2, 2004

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B Analysis (80\%) - 8-Hour Interruption of Continuous Traf
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Start Time & 1500 & 1600 & 1400 & 1200 & 1700 & 1000 & 1300 & 1100 & Req. \\
\hline Minor Volume & 145 & 142 & 137 & 115 & 111 & 96 & 95 & 77 & 60 \\
\hline Major volume & 994 & 898 & 845 & 765 & 983 & 718 & 756 & 705 & 600 \\
\hline Warrant Met? & Yes & 8 \\
\hline
\end{tabular}

Warrant 1C Analysis - 8-Hour Combination of Warrants

80\% of warrants 1A and 1B are met No Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce delays No
 >> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Start Time & 1545 & 1445 & 1645 & 1345 & 1145 & 945 & 1245 & 1045 & Req. \\
\hline Minor Volume & 148 & 135 & 126 & 131 & 122 & 98 & 89 & 76 & - \\
\hline Minor Reqrmt & 112 & 118 & 99 & 145 & 164 & 180 & 171 & 172 & - \\
\hline Warrant Met? & Yes & Yes & Yes & No & No & No & No & No & 4 \\
\hline
\end{tabular}
\(===================================================================\)
Number of 1 -hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow Yes ===================================================================== >> WARRANT 2 IS NOT MET <<

Warrant 3A Analysis - Peak Hour Delay
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Start Time & 1515 & 1615 & 1415 & 1315 & 1115 & 1215 & 945 & 800 & Req. \\
\hline =========== & === & ==== & 118 & 114 & 107 & 104 & 98 & 73 & 100 \\
\hline Total Volume & 1178 & 1182 & 989 & 889 & 866 & 850 & 811 & 962 & 800 \\
\hline Warrant Met? & Yes & Yes & Yes & Yes & Yes & Yes & No & No & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Number of 1 -hour periods meeting the warrant \\
Signal will not seriously disrupt progressive traffic flow Yes \\
Delay for worst minor approach (must be at least 4 veh-hours)
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
```

 12--full warrant .txt
 Project 6330030 ACRPC US7-Exchg St

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 3B Analysis - Peak Hour Volume

Start Time	1515	1615	1400	1145	945	1300	1045	800	Req
============	152	= 149	= 137	= = = $=$	98	= $=$ =	= $=$ =	= $=7=$	
Minor Reqrmt	201	196	260	295	319	298	306	246	
Warrant Met?	No								
Number of 1 -hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow									Yes

Warrant 7 Analysis - Crash Experience

$$
===
$$

$$
80 \% \text { of warrant } 1 \mathrm{~A} \text { or } 1 \mathrm{~B} \text { is met }
$$

Signal will not seriously disrupt progressive traffic flow Yes
Trials of other remedies have failed to reduce accidents No

$$
\text { Number of correctable accidents (must be } 5 \text { or more per year) }
$$NO

0
>> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

Warrant 1A	8-Hour Minimum Vehicular volume	NOT ME
Warrant 1B	8 -Hour Interruption of Continuous Traffic	NOT MET
Warrant 1C	8-Hour Combination of Warrants	NOT ME
warrant 2	4-Hour vehicular volume	NOT MET
Warrant 3A	Peak Hour Delay	NOT MET
Warrant 3B	Peak Hour volume	NOT MET
Warrant 7	Crash Experience	NOT MET

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop Warrant A Analysis - Interim Measure for Signal

```
===================================================================
```

If signal warrants are met, a temporary multi-way stop is allowed

>> WARRANT A IS NOT MET <<
Warrant B Analysis - Crash Experience

Number of correctable accidents (must be 5 or more per year) 0

>> WARRANT B IS NOT MET <<
-
12--ful1 warrant .txt

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Mu7ti-way Stop

Warrant C Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1515	1630	1400	1130	945	1230	800	1045	Req.
Minor Volume	165	159	140	132	109	108	87	56	200
Major volume	1013	1021	845	767	702	708	875	553	300
Warrant Met?	No	8							

Average minor volume for 8 highest minor hours 120
Average major volume for 8 highest minor hours 811 Delay for all minor approaches (must be at least $30 \mathrm{sec} / \mathrm{veh}$)

>> WARRANT C IS NOT MET <<

Warrant D Analysis - 8-Hour Combination of Warrants

Start Time	1515	1630	1400	1130	945	1230	800	1045	Req.
Minor Volume	165	159	140	132	109	108	87	56	160
Major volume	1013	1021	845	767	702	708	875	553	240
Warrant Met?	Yes	No	8						

Average minor volume for 8 highest minor hours 120
Average major volume for 8 highest minor hours 811
Number of correctable accidents (must be 4 or more per year) 0 Delay for all minor approaches (must be at least $24 \mathrm{sec} / \mathrm{veh}$) 0
==1 >> WARRANT D IS NOT MET <<

Summary of MUTCD Mu7ti-way Stop Warrant Analysis

Warrant	A Interim Measure for Signal	NOT MET
Warrant	B Crash Experience	NOT MET
Warrant	C 8-Hour Minimum Vehicular Volume	NOT MET
Warrant	D 8-Hour Combination of Warrants	NOT MET

Project 6330030 ACRPC US7-Exchg St
2006 Projected Traffic Data from Friday Apri1 2, 2004
12:27:50 SRZ

WARRANTS/TEAPAC[Ver 2.02.14] - MUTCD Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1A Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor Volume	152	149	118	114	107	104	98	73	105
Major volume	1013	1029	866	767	748	736	702	875	350
Warrant Met?	Yes	Yes	Yes	Yes	Yes	No	No	No	8

$==$
Number of 1-hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow Yes >> WARRANT 1A IS NOT MET <<

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1545	1445	1345	1645	1145	945	1245	1045	Req.
Minor Volume	148	135	131	126	122	98	89	76	53
Major volume	953	928	833	1005	763	702	736	734	525
Warrant Met?	Yes	8							
Number of 1-hour periods meeting the warrant									10
Signal wil1	t ser	ous7y	disrup	t pro	ressi	e tr	fic	ow	Yes

Warrant 1A Analysis (80\%) - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor Volume	152	149	118	114	107	104	98	73	84
Major volume	1013	1029	866	767	748	736	702	875	280
Warrant Met?	Yes	No	8						

Project 6330030 ACRPC US7－Exchg St 2006 Projected Traffic Data from Friday Apri1 2， 2004

WARRANTS／TEAPAC［Ver 2．02．14］－Warrant Analysis for Traffic Signal

Warrant 1B Analysis（80\％）－8－Hour Interruption of Continuous Traf

Start Time	1630	1530	1430	1130	1330	1230	1030	930	Req．
Minor volume	149	146	123	120	119	100	84	79	42
Major volume	1021	994	897	767	805	708	703	742	420
Warrant Met？	Yes	8							
Number of 1－hour periods meeting the warrant（56\％allowed） 10									

Warrant 1C Analysis－8－Hour Combination of Warrants
＝＝
80\％of warrants 1A and 1B are met（56\％allowed）No Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce delays No
 ＞＞WARRANT 1C IS NOT MET＜＜

Warrant 2 Analysis－4－Hour Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	1015	915	Req．
Minor Volume	152	149	118	114	107	104	85	77	－
Minor Reqrmt	60	60	60	63	65	66	70	65	－
Warrant Met？	Yes	4							

＝＝＝1 Number of 1 －hour periods meeting the warrant 9 Signal wil1 not seriously disrupt progressive traffic flow Yes ＝＝ ＞＞WARRANT 2 IS MET＜＜

Warrant 3A Analysis－Peak Hour Delay

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req
Minor Volume	＝＝＝	＝＝＝	118	114	107	104	98	73	100
Total Volume	1178	1182	989	889	866	850	811	962	800
Warrant Met？	Yes	Yes	Yes	Yes	Yes	Yes	No	No	
Number of 1 －hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow Delay for worst minor approach（must be at least 4 veh－hours）									

13---2006 - reduced warrant text.txt
Project 6330030 ACRPC US7-Exchg St
06/17/04
2006 Projected Traffic Data from Friday Apri1 2, 2004
12:27:50

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 3B Analysis - Peak Hour Volume

Start Time	1630	1530	1430	1330	1145	945	1045	1245	Req.
Minor Volume	149	146	123	119	122	98	76	74	
Minor Reqrmt	79	81	91	114	126	144	135	208	-
Warrant Met?	Yes	Yes	Yes	Yes	No	No	No	No	1
Number of 1 -hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow									4
									Yes

Warrant 7 Analysis - Crash Experience
==1
80% of Warrant 1A or 1B is met Yes
Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce accidents No Number of correctable accidents (must be 5 or more per year) 0 ===1 >> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Mu7ti-way Stop

Warrant A Analysis - Interim Measure for Signal
 If signal warrants are met, a temporary multi-way stop is allowed === >> WARRANT A IS MET <<

Warrant B Analysis - Crash Experience
$===$ Number of correctable accidents (must be 5 or more per year) 0 ===1 >> WARRANT B IS NOT MET <<
\square

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Mu7ti-way Stop

Warrant C Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1500	1600	1400	1130	1700	945	1230	800	Req.
Minor volume	159	146	140	132	123	109	108	87	140
Major volume	994	898	845	767	983	702	708	875	210
Warrant Met?	Yes	Yes	Yes	No	No	No	No	No	8

Average minor volume for 8 highest minor hours 126
Average major volume for 8 highest minor hours 847
Delay for all minor approaches (must be at least $30 \mathrm{sec} / \mathrm{veh}$) 0
>> WARRANT C IS NOT MET <<
Warrant D Analysis - 8-Hour Combination of Warrants

Start Time	1515	1630	1400	1130	945	1230	800	1045	Req.
Minor Volume	165	159	140	132	109	108	87	56	160
Major Volume	1013	1021	845	767	702	708	875	553	240
Warrant Met?	Yes	No	8						

Average minor volume for 8 highest minor hours 120
Average major volume for 8 highest minor hours 811
Number of correctable accidents (must be 4 or more per year) 0 Delay for all minor approaches (must be at least $24 \mathrm{sec} / \mathrm{veh}$) 0
==1 >> WARRANT D IS NOT MET <<

Summary of MUTCD Mu7ti-way Stop Warrant Analysis

Warrant	A Interim Measure for Signal		MET
Warrant	B Crash Experience	NOT	MET
Warrant	C 8-Hour Minimum Vehicular Volume	NOT	MET
Warrant	D 8-Hour Combination of warrants	NOT	MET

Project 6330030 ACRPC US7-Exchg St
2016 Projected Traffic Data from Friday Apri1 2, 2004

WARRANTS/TEAPAC[Ver 2.02.14] - MUTCD Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signa1

Warrant 1A Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1545	1445	1345	1645	1145	945	1245	1045	Req.
Minor volume	172	159	153	148	146	117	105	89	150
Major volume	1118	1088	975	1177	900	823	865	863	500
Warrant Met?	Yes	Yes	Yes	No	No	No	No	No	8

$==$
Number of 1-hour periods meeting the warrant
Signal will not seriously disrupt progressive traffic flow Yes >> WARRANT 1A IS NOT MET <<

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1500	1600	1400	1200	1700	1000	1300	1100	Req.
Minor volume	169	165	162	138	130	114	111	91	75
Major volume	1166	1052	990	899	1152	842	888	832	750
Warrant Met?	Yes	8							
Number of 1-hour periods meeting the warrant									10
Signal wil1	t ser	ious7y	disrup	t pro	ress	e tr	fic	ow	Yes

Warrant 1A Analysis (80\%) - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor Volume	177	174	140	133	127	124	117	87	120
Major volume	1189	1205	1014	899	881	868	823	1027	400
Warrant Met?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	8

Project 6330030 ACRPC US7-Exchg St

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B Analysis (80\%) - 8-Hour Interruption of Continuous Traf

Start Time	1630	1530	1430	1130	1330	1230	1030	930	Req.
Minor Volume	174	171	146	143	138	119	98	95	60
Major volume	1195	1166	1051	906	944	832	826	870	600
Warrant Met?	Yes	8							
Number of 1-hour periods meeting the warrant 10									

Warrant 1C Analysis - 8-Hour Combination of Warrants

80\% of warrants 1A and 1B are met No Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce delays No
 >> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1515	1615	1130	1415	1315	945	800	1230	Req.
Minor Volume	177	174	143	140	133	117	87	86	-
Minor Reqrmt	81	80	124	98	125	148	96	205	<--
Warrant Met?	Yes	Yes	Yes	Yes	Yes	No	No	No	4

=== 5 Signal will not seriously disrupt progressive traffic flow Yes == >> WARRANT 2 IS MET <<

Warrant 3A Analysis - Peak Hour Delay

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor volume	177	174	140	133	127	124	117	87	100
Total volume	1383	1383	1159	1042	1021	1006	954	1133	800
Warrant Met?	Yes	No	1						
Number of 1-hour periods meeting the warrant									
Signal wil1 not seriously disrupt progressive traffic flow									
Delay for worst minor approach (must be at least 4 veh-hours)									

Project 6330030 ACRPC US7-Exchg St

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 3B Analysis - Peak Hour Volume

Start Time	1615	1500	1400	1145	945	1300	1045	800	Req.
Minor Volume	174	169	162	146	117	111	89	87	-
Minor Reqrmt	149	159	208	235	270	240	252	197	<--
Warrant Met?	Yes	Yes	No	No	No	No	No	No	1
Number of 1-hour periods meeting the warrant 2									
Signal wil1	t se	ous7y	disr	t prog	ressiv	e tr	fic		Yes

Warrant 7 Analysis - Crash Experience
===1
80% of warrant 1A or 1B is met Yes
Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce accidents No Number of correctable accidents (must be 5 or more per year) 0 === >> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

Warrant 1A	8-Hour Minimum Vehicular Volume	NOT	MET
Warrant 1B	8-Hour Interruption of Continuous Traffic		MET
Warrant 1C	8-Hour Combination of Warrants	NOT	MET
Warrant 2	4-Hour Vehicular Volume		MET
Warrant 3A	Peak Hour Delay	NOT	MET
Warrant 3B	Peak Hour Volume		MET
Warrant 7	Crash Experience	NOT	MET

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant A Analysis - Interim Measure for Signal
 If signal warrants are met, a temporary multi-way stop is allowed === >> WARRANT A IS MET <<

Warrant B Analysis - Crash Experience
$==$ Number of correctable accidents (must be 5 or more per year) 0 == >> WARRANT B IS NOT MET <<
\square

Project 6330030 ACRPC US7-Exchg St
07/08/04
16:41:21

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Mu7ti-way Stop

Warrant C Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1515	1630	1400	1130	945	1230	800	1045	Req.
Minor volume	194	186	====	=== 158	131	130	106	65	200
Major volume	1189	1195	990	906	823	832	1027	649	300
Warrant Met?	No	8							

Average minor volume for 8 highest minor hours 142
Average major volume for 8 highest minor hours 951
Delay for all minor approaches (must be at least $30 \mathrm{sec} / \mathrm{veh}$)
elay for
>> WARRANT C IS NOT MET <<

Warrant D Analysis - 8-Hour Combination of Warrants

Start Time	1500	1600	1400	1130	1700	945	1230	800	Req.
Minor Volume	187	169	165	158	145	131	130	106	160
Major volume	1166	1052	990	906	1152	823	832	1027	240
Warrant Met?	Yes	Yes	Yes	No	No	No	No	No	8

Average minor volume for 8 highest minor hours 149
Average major volume for 8 highest minor hours 994
Number of correctable accidents (must be 4 or more per year) 0
Delay for all minor approaches (must be at least $24 \mathrm{sec} / \mathrm{veh}$) 0
===1
>> WARRANT D IS NOT MET <<

Summary of MUTCD Multi-way Stop Warrant Analysis

Warrant	A Interim Measure for Signal		MET
Warrant	B Crash Experience	NOT	MET
Warrant	C 8-Hour Minimum Vehicular Volume	NOT	MET
Warrant	D 8-Hour Combination of warrants	NOT	MET

Project 6330030 ACRPC US7-Exchg St
2016 Projected Traffic Data from Friday April 2, 2004
12:28:50
SRZ

WARRANTS/TEAPAC[Ver 2.02.14] - MUTCD Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1A Analysis - 8-Hour minimum Vehicular volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor Volume	177	174	140	133	127	124	117	87	105
Major Volume	1189	1205	1014	899	881	868	823	1027	350
Warrant Met?	Yes	No	8						
Number of 1-hour periods meeting the warrant 7									
Signal wil1 no	t ser	ous7y	disrup	t prog	ress	ve tr	ic	ow	Yes

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1630	1530	1430	1130	1330	1230	1030	930	Req
===========	174	171	= 146	= 143	= $=138$	= $=119$	= $=18$	95	
Major volume	1195	1166	1051	906	944	832	826	870	52
Warrant Met?	Yes								
Number of 1-hour periods meeting the warrant Signal will not seriously disrupt progressive traffic flow Yes									

Warrant 1A Analysis (80\%) - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	1015	915	Req
Minor volume	177	174	140	133	127	124	100	92	84
Major volume	1189	1205	1014	899	881	868	821	877	280
Warrant Met?	Yes								

Project 6330030 ACRPC US7-Exchg St 2016 Projected Traffic Data from Friday Apri1 2, 2004

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 1B Analysis (80\%) - 8-Hour Interruption of Continuous Traf

Start Time	1515	1615	1415	1315	1115	1215	1015	915	Req.
Minor volume	177	174	140	133	127	124	100	92	42
Major volume	1189	1205	1014	899	881	868	821	877	420
Warrant Met?	Yes	8							
Number of 1-hour periods meeting the warrant (56\% allowed) 11									

Warrant 1C Analysis - 8-Hour Combination of Warrants
 >> WARRANT 1C IS NOT MET <<

Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1630	1530	1430	1130	1330	1230	1030	930	Req.
Minor Volume	174	171	146	143	138	119	98	95	-
Minor Reqrmt	60	60	60	60	60	60	60	60	<--
Warrant Met?	Yes	4							

$===$ Number of 1-hour periods meeting the warrant 10 Signal will not seriously disrupt progressive traffic flow Yes == >> WARRANT 2 IS MET <<

Warrant 3A Analysis - Peak Hour Delay

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor volume	177	174	140	133	127	124	117	87	100
Total Volume	1383	1383	1159	1042	1021	1006	954	1133	800
Warrant Met?	Yes	No	1						
Number of 1-hour periods meeting the warrant									
Signal wil1 not seriously disrupt progressive traffic flow									
Delay for worst minor approach (must be at least 4 veh-hours)									

$$
\begin{array}{ll}
\text { Project } 6330030 \text { ACRPC US7-Exchg St reduced warrant text.txt } \\
\text { Project } & \\
2016 \text { Projected Traffic Data from Friday Apri1 2, } 2004 & \text { 06/17/04 }
\end{array}
$$

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Traffic Signal

Warrant 3B Analysis - Peak Hour Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor volume	177	174	140	133	127	124	117	87	
Minor Reqrmt	75	75	79	90	95	98	109	79	<-
Warrant Met?	Yes								
Number of 1-hour periods meeting the warrant									
Signal wil1	ot ser	ious7y	disru	t pro	gressi	ve tr	ic		Ye

Warrant 7 Analysis - Crash Experience

80% of warrant 1A or 1B is met Yes
Signal will not seriously disrupt progressive traffic flow Yes Trials of other remedies have failed to reduce accidents No Number of correctable accidents (must be 5 or more per year)No
0>> WARRANT 7 IS NOT MET <<

Summary of MUTCD Traffic Signal Warrant Analysis

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant A Analysis - Interim Measure for Signal
 If signal warrants are met, a temporary multi-way stop is allowed
 >> WARRANT A IS MET <<

Warrant B Analysis - Crash Experience
 Number of correctable accidents (must be 5 or more per year) 0
 >> WARRANT B IS NOT MET <<
\square

WARRANTS/TEAPAC[Ver 2.02.14] - Warrant Analysis for Multi-way Stop

Warrant C Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1515	1615	1415	1315	1115	1215	945	800	Req.
Minor volume	194	178	145	143	140	138	131	106	140
Major volume	1189	1205	1014	899	881	868	823	1027	210
Warrant Met?	Yes	Yes	Yes	Yes	Yes	No	No	No	8

Average minor volume for 8 highest minor hours 147
Average major volume for 8 highest minor hours 988
Delay for all minor approaches (must be at least $30 \mathrm{sec} / \mathrm{veh}$) 0
$==1 ~$
>> WARRANT C IS NOT MET <<
Warrant D Analysis - 8-Hour Combination of Warrants

Start Time	1500	1600	1400	1130	1700	945	1230	800	Req.
Minor Volume	187	169	165	158	145	131	130	106	160
Major volume	1166	1052	990	906	1152	823	832	1027	240
Warrant Met?	Yes	Yes	Yes	No	No	No	No	No	8

Average minor volume for 8 highest mịnor hours 149
Average major volume for 8 highest minor hours 994

Number of correctable accidents (must be 4 or more per year) 0 Delay for all minor approaches (must be at least $24 \mathrm{sec} / \mathrm{veh}$) 0

Summary of MUTCD Mu7ti-way Stop Warrant Analysis

Warrant	A Interim Measure for Signal		MET
Warrant	B Crash Experience	NOT	MET
Warrant	C 8-Hour Minimum Vehicular Volume	NOT	MET
Warrant	D 8-Hour Combination of warrants	NOT	MET

	4			\checkmark			4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{4}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		3\%			3\%			3\%			-3\%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.954			0.981			0.998			0.972	
Flt Protected		0.969			0.982			0.995				
Satd. Flow (prot)	0	1602	0	0	1768	0	0	1721	0	0	1736	0
Flt Permitted		0.849			0.939			0.913			0.999	
Satd. Flow (perm)	0	1404	0	0	1690	0	0	1579	0	0	1734	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		23			2			2			39	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	41	2	22	5	7	2	35	328	6	2	540	140
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Adj. Flow (vph)	43	2	23	5	7	2	37	345	6	2	568	147
Lane Group Flow (vph)	0	68	0	0	14	0	0	388	0	0	717	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	40.0	40.0	0.0	40.0	40.0	0.0
Total Split (\%)	33\%	33\%	0\%	33\%	33\%	0\%	67\%	67\%	0\%	67\%	67\%	0\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		9.0			9.0			61.6			61.6	
Actuated g/C Ratio		0.11			0.11			0.82			0.82	
v / c Ratio		0.38			0.07			0.30			0.50	
Uniform Delay, d1		21.2			26.7			2.0			2.4	
Delay		11.5			14.2			2.8			3.4	
LOS		B			B			A			A	
Approach Delay		11.5			14.2			2.8			3.4	
Approach LOS		B			B			A			A	
Queue Length 50th (ft)		15			4			23			51	
Queue Length 95th (ft)		41			16			63			140	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (\%)												

Splits and Phases: 3: Happy \& US Rt 7

	4			7	4		4		\%	\downarrow		\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\stackrel{1}{*}$			\&			\uparrow			\uparrow	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		3\%			3\%			3\%			-3\%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.964			0.946						0.981	
Flt Protected		0.968			0.993			0.998			0.999	
Satd. Flow (prot)	0	1617	0	0	1724	0	0	1729	0	0	1750	0
Flt Permitted		0.798			0.972			0.980			0.995	
Satd. Flow (perm)	0	1333	0	0	1687	0	0	1698	0	0	1743	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		33			6						24	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	112	11	45	2	7	6	20	591	0	6	432	71
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Adj. Flow (vph)	118	12	47	2	7	6	21	622	0	6	455	75
Lane Group Flow (vph)	0	177	0	0	15	0	0	643	0	0	536	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	35.0	35.0	0.0	35.0	35.0	0.0
Total Split (\%)	36\%	36\%	0\%	36\%	36\%	0\%	64\%	64\%	0\%	64\%	64\%	0\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		11.3			11.3			34.2			34.2	
Actuated g/C Ratio		0.21			0.21			0.66			0.66	
v/c Ratio		0.58			0.04			0.57			0.46	
Uniform Delay, d1		15.3			10.1			5.1			4.3	
Delay		11.5			10.9			7.0			5.8	
LOS		B			B			A			A	
Approach Delay		11.5			10.9			7.0			5.8	
Approach LOS		B			B			A			A	
Queue Length 50th (ft)		27			2			83			45	
Queue Length 95th (ft)		84			13			230			139	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (\%)												

Lane Group
95th Up Block Time (\%)
Turn Bay Length (ft)
50th Bay Block Time \%
95th Bay Block Time \%
Queuing Penalty (veh)
Intersection Summary
Area Type: \quad Other
Cycle Length: 55 EBR
Actuated Cycle Length: 51.7
Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.58
Intersection Signal Delay: 7.1
Intersection Capacity Utilization 73.8%

Splits and Phases: \quad 3: Happy \& US Rt 7

	4			7			4	\dagger	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\&			\&			\&	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		3\%			3\%			3\%			-3\%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.964			0.986						0.965	
Flt Protected		0.968			0.988			0.997				
Satd. Flow (prot)	0	1617	0	0	1787	0	0	1728	0	0	1723	0
Flt Permitted		0.781			0.916			0.924			0.994	
Satd. Flow (perm)	0	1305	0	0	1657	0	0	1601	0	0	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		29			3						40	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	268	24	107	7	17	3	50	690	0	7	504	180
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Adj. Flow (vph)	282	25	113	7	18	3	53	726	0	7	531	189
Lane Group Flow (vph)	0	420	0	0	28	0	0	779	0	0	727	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	28.0	28.0	0.0	28.0	28.0	0.0	42.0	42.0	0.0	42.0	42.0	0.0
Total Split (\%)	40\%	40\%	0\%	40\%	40\%	0\%	60\%	60\%	0\%	60\%	60\%	0\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		22.0			22.0			34.6			34.6	
Actuated g/C Ratio		0.34			0.34			0.53			0.53	
v/c Ratio		0.91			0.05			0.91			0.78	
Uniform Delay, d1		18.8			12.7			13.6			11.2	
Delay		35.3			14.4			22.5			13.2	
LOS		D			B			C			B	
Approach Delay		35.3			14.4			22.5			13.2	
Approach LOS		D			B			C			B	
Queue Length 50th (ft)		159			7			275			192	
Queue Length 95th (ft)		\#327			23			\#516			323	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (\%)												

K:\6330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro
\#6330030 PM 2016 w dev vol and no LTL.sy6 Bれ\&

Splits and Phases: 3: Happy \& US Rt 7

	\rangle						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			¢	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		3\%			3\%			3\%			-3\%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.954			0.982			0.998			0.960	
Flt Protected		0.970			0.987			0.994				
Satd. Flow (prot)	0	1604	0	0	1778	0	0	1719	0	0	1714	0
Flt Permitted		0.826			0.946			0.842			0.999	
Satd. Flow (perm)	0	1366	0	0	1704	0	0	1456	0	0	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		37			3			2			63	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	65	4	35	6	13	3	53	383	7	3	631	266
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Adj. Flow (vph)	68	4	37	6	14	3	56	403	7	3	664	280
Lane Group Flow (vph)	0	109	0	0	23	0	0	466	0	0	947	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	40.0	40.0	0.0	40.0	40.0	0.0
Total Split (\%)	33\%	33\%	0\%	33\%	33\%	0\%	67\%	67\%	0\%	67\%	67\%	0\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		10.1			10.1			57.5			57.5	
Actuated g/C Ratio		0.13			0.13			0.77			0.77	
v / c Ratio		0.51			0.10			0.41			0.71	
Uniform Delay, d1		19.9			25.0			2.9			4.0	
Delay		13.4			16.6			4.0			9.7	
LOS		B			B			A			A	
Approach Delay		13.4			16.6			4.0			9.7	
Approach LOS		B			B			A			A	
Queue Length 50th (ft)		25			7			36			99	
Queue Length 95th (ft)		56			20			106			\#478	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (\%)												

K:16330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro)\#6330030 AM 2016 w dev vol and no LTL.sy6 Bd\&

	\rightarrow					4	4	7		\downarrow	\downarrow
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
95th Up Block Time (\%)											
Turn Bay Length (ft)											
50th Bay Block Time \%											
95th Bay Block Time \%											
Queuing Penalty (veh)											
Intersection Summary											
Area Type: Other											
Cycle Length: 60											
Actuated Cycle Length: 74.3											
Natural Cycle: 60											
Control Type: Actuated-Uncoordinated											
Maximum v/c Ratio: 0.71											
Intersection Signal Delay: 8.3				Intersection LOS: A							
Intersection Capacity Utilization 99.9\%				ICU Level of Service E							
\# 95th percentile volume exceeds capacity, queue may be longer.											

Splits and Phases: \quad 3: Happy \& US Rt 7

	4			\checkmark			4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow			¢			¢			${ }_{4}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		3\%			3\%			3\%			-3\%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.982			0.998			0.960	
Flt Protected	0.950				0.987			0.994				
Satd. Flow (prot)	1646	1499	0	0	1778	0	0	1719	0	0	1714	0
Flt Permitted	0.742				0.956			0.842			0.999	
Satd. Flow (perm)	1286	1499	0	0	1722	0	0	1456	0	0	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		37			3			2			63	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	65	4	35	6	13	3	53	383	7	3	631	266
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Adj. Flow (vph)	68	4	37	6	14	3	56	403	7	3	664	280
Lane Group Flow (vph)	68	41	0	0	23	0	0	466	0	0	947	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	40.0	40.0	0.0	40.0	40.0	0.0
Total Split (\%)	33\%	33\%	0\%	33\%	33\%	0\%	67\%	67\%	0\%	67\%	67\%	0\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)	9.9	9.9			9.7			61.0			61.0	
Actuated g/C Ratio	0.13	0.13			0.12			0.81			0.81	
v / c Ratio	0.42	0.19			0.11			0.39			0.67	
Uniform Delay, d1	32.1	3.0			26.7			2.4			3.3	
Delay	19.4	8.2			16.8			3.5			8.5	
LOS	B	A			B			A			A	
Approach Delay		15.1			16.8			3.5			8.5	
Approach LOS		B			B			A			A	
Queue Length 50th (ft)	24	1			7			36			98	
Queue Length 95th (ft)	48	21			20			98			\#465	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (\%)												

K:16330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro
\#6330030 AM 2016 with dev volumes.sy6 Bd\&

Splits and Phases: \quad 3: Happy \& US Rt 7

	\rangle	\rightarrow		7			4	4	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	$\hat{\square}$			¢			¢			¢	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		3\%			3\%			3\%			-3\%	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.877			0.986						0.965	
Flt Protected	0.950				0.988			0.997				
Satd. Flow (prot)	1646	1520	0	0	1787	0	0	1728	0	0	1723	0
Flt Permitted	0.739				0.944			0.925			0.994	
Satd. Flow (perm)	1281	1520	0	0	1708	0	0	1603	0	0	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		113			3						51	
Headway Factor	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.98	0.98
Link Speed (mph)		40			40			50			50	
Link Distance (ft)		1424			1464			1327			1392	
Travel Time (s)		24.3			25.0			18.1			19.0	
Volume (vph)	268	24	107	7	17	3	50	690	0	7	504	180
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Adj. Flow (vph)	282	25	113	7	18	3	53	726	0	7	531	189
Lane Group Flow (vph)	282	138	0	0	28	0	0	779	0	0	727	,
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Split (s)	21.0	21.0	0.0	21.0	21.0	0.0	39.0	39.0	0.0	39.0	39.0	0.0
Total Split (\%)	35\%	35\%	0\%	35\%	35\%	0\%	65\%	65\%	0\%	65\%	65\%	0\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)	14.8	14.8			14.8			31.8			31.8	
Actuated g/C Ratio	0.27	0.27			0.27			0.58			0.58	
v / c Ratio	0.82	0.28			0.06			0.84			0.71	
Uniform Delay, d1	18.6	2.7			13.1			9.2			7.5	
Delay	26.8	6.0			14.7			14.4			8.6	
LOS	C	A			B			B			A	
Approach Delay		20.0			14.7			14.4			8.6	
Approach LOS		B			B			B			A	
Queue Length 50th (ft)	92	6			6			200			131	
Queue Length 95th (ft)	\#206	42			22			\#432			235	
Internal Link Dist (ft)		1344			1384			1247			1312	
50th Up Block Time (\%)												

K:16330030 (ACRPC US7-Exchg St)\Traffic Analysis--Counts\Synchro
\#6330030 PM 2016 with dev volumes.sy6 Bd\&

Splits and Phases: 3: Happy \& US Rt 7

2016 AM and PM Rodel Roundabout Analysis with 50\% Confidence Level

2016 AM and PM Rodel Roundabout Analysis with 85\% Confidence Level

U.S. 7 / EXCHANGE STREET INTERSECTION TRAFFIC \& SAFETY IMPROVEMENT MIDDLEBURY, VT

- Sight Distance Summary -

Stopping Sight Distance (SSD) = brake reaction distance + braking distance

brake reaction distance = distance traversed by the vehicle from the instant the driver sees an object until the brakes are applied
braking distance $=$ the distance needed to stop the vehicle from the instant brake application

Stopping Sight Distance @ 50 mph = 425'
With a 3\% downgrade = 446'
Stopping Sight Distance @ 40 mph = 305'
(With a 3\% downgrade = 315') n/a
Decision Sight Distance (DSD) = the sight distance needed for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its potential threat, select an appropriate speed and path, and initiate and complete the maneuver safely and efficiently.

50 mph
Stop on rural road = 465'
Stop on urban road = 910'

40 mph
Stop on rural road = 330'
Stop on urban road $=690^{\prime}$

Intersection Sight Distance (ISD) = Case B1 = Left Turn From Stop on Minor Road Case B = Intersections with Stop Control on the Minor Road
Intersection Sight Distance @ $50 \mathrm{mph}=555$ '
Intersection Sight Distance @ 40 mph = 445'
NOTE: ISD from a turn on stop should equal the SSD of the other vehicle to have sufficient sight distance to anticipate and avoid collisions.
NOTE: Intersection sight distances should exceed stopping sight distance along major road.
Therefore, 555' (ISD) should equal or exceed 446' (SSD).

[^1]
Appendix D - Conceptual Cost Estimates

Middlebury - Exchange Street Cost Estimate Assumptions
 Project Number 6330030
 Middlebury, VT

Written by: MBL, August 3, 2004
Checked by: SRZ, August 10, 2004

1. US Rt. 7/Exchange St./Happy Hollow Rd. Roundabout

```
Length = 300 ft (south)
Length = 200 ft (north)
Length = 200 ft (east-west)
```


Common excavation

- It is assumed that $4^{\prime}\left(48\right.$ ") will be excavated on the southern approach for the entire 300^{\prime} length. Assume 21" of excavation and 8" of excavated pavement for southern approach, the Roundabout area, and the Eastern approach. 29" will be excavated for all earth areas to accommodate for the roundabout construction. Full reconstruction will occur for the Roundabout area, the southern approach (300') and the eastern approach (120').
- For the northern approach, the 200' island will be boxcut. The road will remain as is. The East and West approach islands will be reconstructed with the roundabout area.

Pavement removal - assume the eastern approach pavement is fully removed, reconstructed, graded and paved over, 120' length.

Gravel backfill - assume each quadrant has fill added to it.
Grading - it is assumed that all areas being reconstructed or excavated will need grading. Also in this estimate is grading on each of the shoulders where new topsoil will be placed.

Stone - assume stone will be placed on the reconstructed eastern approach and the new widened roadway areas for the west approach.

Emulsified asphalt - will be located over the entire project area at approximately 2" depth.
Bit pavement - will be located over the east approach and west widened areas.
Curbing will be assumed as follows:
Sloped Granite Curbing at the truck apron and the corners
Vertical Granite Curbing on the inside of the roundabout and at the islands.
Assume 2 new drainage pipe extensions (32" dia.) and 2 new headwalls under the roundabout.
The truck apron will be 8" depth of stamped concrete.
4" Topsoil will be assumed. Grading along with seeding, fertilizing and topsoil will extend out to 30’ from edge of roadways.

2. US Rt. 7/Exchange St./Happy Hollow Rd. Intersection - Widened Roadways and Signalization

Length $=150 \mathrm{ft}$ (north-south)
Length $=300 \mathrm{ft}$ (west)
Length $=225 \mathrm{ft}$ (east)

Common excavation - assume none on North and South approaches, 21" on the East Approach with 8" pavement removal and $29 " \sim 7.5^{\prime}$ either side of the western approach for the widened roadway. It is assumed that 29 " of the existing grassy areas at the intersection corners will be excavated to accommodate for the intersection expansion construction. The 29 " includes 5 " pavement, and an 18 " gravel base. The east approach is widened approximately 10'

Pavement removal - assume the eastern approach is fully reconstructed, graded and paved over.
Gravel backfill - assume each quadrant but the SE area has fill added to it. Also, the west approach, southern area requires regarding of this sloped ditch area.

Grading - it is assumed that all areas being reconstructed or excavated will need grading. Also in this estimate is grading on each of the shoulders where new topsoil will be placed.

Stone - assume stone will be placed on the reconstructed eastern approach and under the new widened roadway areas for the west approach.

Emulsified asphalt - will be located over the entire area at approximately 2 " depth.
Bit pavement - will be located over the east approach and west widened areas.
Vertical granite curbing will be assumed as follows:
Vertical Granite Curbing at the NW corner of the intersection to define shoulders for trucks.
Assume 2 new drainage pipe extensions (32" dia., 15’ long) and 2 new headwalls.
4" Topsoil will be assumed. Grading along with seeding, fertilizing and topsoil will extend out to 30’ from edge of roadways.

3. US Rt. 7/Exchange St./Happy Hollow Rd. Intersection With New Signalization (1B)

Assume same as intersection \#2, other than the following:

```
Length = 120 ft (north)
Length = 150 ft (south)
Length = 300 ft (west)
Length = 120 ft (east)
```

East approach is not widened but it will be fully reconstructed.
Assume new drainage pipe extensions for both sides, for cost estimation only.
The southeastern and northeastern corners will not be widened; the radius will remain as is.

Checked by: SRZ Aug 102004
NOTE: Property Impacts, ROW acquisition, and design services not included.

Signalized Intersection with Widened Roadways						
Item	Pay Item	Units	Unit Cost	Quantity		l Cost
Removal Items						
Common Excavation	203.15	CY	\$ 10	893	\$	8,930
Pavement Removal	203.28	CY	\$ 15	89	\$	1,335
New Items						
Gravel Backfill for Slope Stabilization	203.35	CY	\$ 12	1067	\$	12,804
Fine Grading - Subbase	203.4	SY	\$ 1	6539	\$	6,539
Subbase of DGC Stone	301.35	CY	\$ 16	686	\$	10,976
Emulsified Asphalt	404.65	Ton	\$ 30	497	\$	14,910
Bituminous Pavement	406.25	Ton	\$ 45	431	\$	19,395
Vertical Granite Curb	616.21	LF	\$ 25	100	\$	2,500
Traffic Signals	-	lump sum	-	1	+	150,000
New Additional Items						
Pavement Markings: Street (White)	708.08	LF	\$ 1.50	1960	\$	2,940
Pavement Markings: Street (Yellow)	708.08	LF	\$ 1.50	3180	\$	4,770
Pavement Markings: Symbols	646.5	each	\$ 51	7	\$	357
Pavement Markings: Stop Bars	646.46	LF	\$ 4	90	\$	360
Topsoil	651.35	CY	\$ 30	400	\$	12,000
Seed, Fertilizer and Mulch	NA	30\% topsoil cost	NA	NA	\$	3,960
Landscaping	NA	total	\$ 5,000	1	\$	5,000
Headwalls	NA	EA	\$ 2,000	2	\$	4,000
32" CMP Pipe	601	LF	\$ 60.00	15	\$	900
Intersection A						
		Subtotal			\$	261,676
		Mobilization (10\%)			\$	26,168
		Contingency (25\%)			\$	65,419
		Total			\$	353,000
		2006 Construction Adj. (10\%)			\$	35,300
		Total			\$	388,000
		Say			\$	400,000
		Preliminary Engineering			\$	60,000
		R.O.W.			\$	20,000
		Total			\$	480,000

NOTE: Property Impacts, ROW acquisition, and design services not included.

Roundabout						
Item	Pay Item	Units	Unit Cost	Quantity	Total Cost	
Removal Items						
Common Excavation	203.15	CY	\$ 10	3131	\$	31,310
Pavement Excavation	203.28	CY	\$ 15	607	\$	9,105
New Items						
Gravel Backfill for Slope Stabilization	203.35	CY	\$ 12	1263	\$	15,156
Fine Grading - Subbase	203.4	SY	\$ 2	10803	\$	21,606
Subbase of DGC Stone	301.35	CY	\$ 16	1960	\$	31,360
Emulsified Asphalt	404.65	Ton	\$ 30	530	\$	15,900
Bituminous Pavement for Road	406.25	Ton	\$ 45	740	\$	33,300
4' Pav't Behind Curbing	406.25	Ton	\$ 40	46	\$	1,840
Sloped Granite Curb	616.20	LF	\$ 20	658	\$	13,160
Vertical Granite Curb	616.21	LF	\$ 25	1173	\$	29,325
Truck Apron: Stamped Concrete	618.11	SY	\$ 30	471	\$	14,130
New Additional Items						
Pavement Markings: Street (White)	708.08	LF	\$ 1.50	2060	\$	3,090
Pavement Markings: Street (Yellow)	708.08	LF	\$ 1.50	3680	\$	5,520
Pavement Markings: Triangles	SRZ \#	EA	\$ 34	24	\$	816
Topsoil	651.35	CY	\$ 30	843	\$	25,290
Seed, Fertilizer and Mulch	NA	30\% topsoil cost	NA	NA	\$	8,346
Landscaping	-	total	\$ 20,000	1	\$	20,000
Headwalls	NA	EA	\$ 4,000	2	\$	8,000
32" CMP Pipe	601	LF	\$ 60.00	70	\$	4,200
Lighting	-	EA	\$ 2,000.00	12	\$	24,000
Misc (10\%)					\$	50,000
		Roundabout				
		Subtotal			\$	365,454
		Mobilization (10\%)			\$	36,545
		Contingency (25\%)			\$	91,363
		Total			\$	493,000
		2006 Construction Adj. (10\%)			\$	49,300
		Total			\$	542,000
		Say			\$	550,000
		Preliminary Engineering			\$	100,000
		R.O.W. (3/4 acre)			\$	60,000
		Total			\$	710,000

Appendix E-Draft Scoping Study Comments

Edwards, Greg

From: Zehler, Stephanie
Sent: Wednesday, September 22, 2004 9:45 AM
To: Edwards, Greg
Subject: FW: US 7/ Exchange Street scoping study
Comments from Dick Hosking regarding US7/Exchange Street, below.
-----Original Message-----
From: Benjamin, Tammy [mailto:Tammy.Benjamin@state.vt.us]
Sent: Tuesday, September 21, 2004 2:58 PM
To: Zehler, Stephanie
Cc: Garrett Dague
Subject: FW: US 7/ Exchange Street scoping study

Here are the District Transportation Administrator's comments.
Garrett, I plan on attending the public meeting and will let you know what other VTrans personnel may be attending.
-----Original Message-----
From: Hosking, Dick
Sent: Tuesday, September 21, 2004 11:15 AM
To: Benjamin, Tammy; Perkins, John
Cc: Dill, David; Scott, David; Allen, Chad
Subject: US 7/ Exchange Street scoping study
I have reviewed the Scoping Study and offer the following comments form the Operations side.

Signals

Under the disadvantages, it is stated that "Continuous maintenance is required for the traffic signal". This is misleading. Our new designs using mast arms and LED signal faces have reduced our maintenance requirements tremendously.

Roundabouts

Add the following under disadvantages

- Winter Maintenance costs for a roundabout can be significantly higher then a conventional intersection. Snow removal in the storm requires that the plow vehicle to circle through the roundabout moving snow to the right which then plugs the intersecting legs which then must be cleaned out. The roundabout will add 10-15 minutes to the time to complete a route. This may reduce the level of service on the remaining parts of the route. Snow removal after the storm may require the removal of snow with loaders and trucks. Snow removal during heavy snow events may require the deployment of special equipment which is located on the other side of town.
- Placing a 20 MPH roundabout in a 50 MPH zone is not desirable.
- Educating drivers on how to use a roundabout is a challenge. Most motorists may feel that US 7 has the right of way when in fact it is the vehicle in the roundabout that has the right of way.

In my opinion, the introduction of a roundabout at this location should only be done if the Class 1 section of US 7 is extended to the north to include this intersection.

Edwards, Greg

From: Benjamin, Tammy [Tammy.Benjamin@state.vt.us]
Sent: Wednesday, September 29, 2004 1:56 PM
To: Edwards, Greg
Cc: Garrett Dague
Subject: FW: Rt. 7/Exchange St. alternatives
Greg, these are other comments by VTrans, too.
------Original Message-----
From: Perkins, John
Sent: Thursday, July 08, 2004 2:20 PM
To: Benjamin, Tammy
Cc: Nyquist, Bruce; Byrne, Bernard
Subject: RE: Rt. 7/Exchange St. alternatives
Is a signal warranted at this location? This location is almost a mile from Middlebury compact limits in a 50 MPH zone. This intersection is too far out to function as a Gateway.

If signal is warranted it should be fully actuated and all left turns will run on a protective phase. The signal shall not be placed on flash during off peak times. The tree clearing on the SW approach is excessive as this signal will not run on flash during off peak times.

You need to state how many acres of wetland will be affected in the roundabout option. The RAB needs to be designed for oversized loads and a WB 67 vehicle as US 7 is a truck rte and our oversized load rte.

We need to see a book on this proposed project.

Edwards, Greg

From: Benjamin, Tammy [Tammy.Benjamin@state.vt.us]
Sent: Wednesday, September 29, 2004 1:58 PM
To: Edwards, Greg
Cc: Garrett Dague
Subject: FW: Exchange St. Mtg. Minutes August 10th
Greg, another comment made earlier on.
------Original Message-----
From: Perkins, John
Sent: Wednesday, September 01, 2004 10:17 AM
To: Benjamin, Tammy
Subject: RE: Exchange St. Mtg. Minutes August 10th
They have something written and we need to see it. I believe that I have seen pieces of it. The cost at 200 K for the RAB is not the 800 K we would estimate. This is also a 50 MPH zone that is not appropriate for a RAB.

Edwards, Greg

From: Benjamin, Tammy [Tammy.Benjamin@state.vt.us]
Sent: Wednesday, September 29, 2004 1:58 PM
To: Edwards, Greg
Cc: Garrett Dague
Subject: FW: US 7/Exchange Street Intersection Alternatives
Another one. I'm sorry, I should have put these all together for you.
-----Original Message-----
From: Perkins, John
Sent: Wednesday, September 15, 2004 9:31 AM
To: Benjamin, Tammy; Nyquist, Bruce
Subject: RE: US 7/Exchange Street Intersection Alternatives
I gave the book to Bruce.
The intersections as designed are way too wide. A WB 67 should be able to get around a 60 foot radius coming from a 12 foot lane and 8 foot shoulder. Move stop bars up. Guard rail for the signal post is needed and is not a problem.

Need to look at pavement limits, if you are not doing anything you don't need to repave.
Emulsified asphalt is a fog coat on existing pavement of $.02 \mathrm{gal} / \mathrm{sy}$.
Need to look at ROW costs with RAB. With splitter island to south it looks like you limit access to properties on SW to right in right out.
-----Original Message-----
From: Benjamin, Tammy
Sent: Wednesday, September 15, 2004 8:39 AM
To: Perkins, John
Subject: US 7/Exchange Street Intersection Alternatives
Hi John. Any other comments on the report?

[^0]: Note 1: $\quad \mathrm{C} / \mathrm{I}=$ Commercial-Industrial Combined Use
 InIndustrial
 $\mathrm{O}=$ Offlice Use Only
 CeCommerclal
 $R=$ Residential
 Unundeveloped Lot
 Note 2: Source: Town of Middlebury Tax Maps
 Note 3: Source: Town of Middlebury Listers Office
 Note 4: Counted on 7/18/96 betwean 9;00 and 11:00 A.M.
 Notg. 5: Total lot size=239.7 acres; 90 acres in Industrial Zone, balance is outside Industrial Zone

[^1]: *Data is taken from the 2001 AASHTO Green Book. Refer to pgs 112, 115, 116, 655, 665 for the appropriate sight distance tables.

